
Supplementary Information 

S1. Buckingham’s Pi-theorem:  

Let 𝑥 , 𝑥 , … … . , 𝑥  be 𝑛 dimensional variables which are physically relevant and related to a 
given problem. An unknown dimensionally homogenous set of equations connects these 𝑛 
dimensional variables that is physically significant in a given scenario.  

These variables can be expressed using a functional relationship defined as 

𝐹 𝑥 , 𝑥 , … … . , 𝑥 0 

or 

𝑥 𝑓 𝑥 , … … . , 𝑥  

There will be 𝑘 primary variables required to explain these 𝑛 variables, and the other variables 
can be written as 𝑛 𝑘) dimensionless and independent quantities known as 'Pi-groups,' As 
a result, the functional connection can be simplified to a far more compact form. It's important 
to note that this set of non-dimensional characteristics isn't unique. They are, nevertheless, self-
contained and make up a full set. Even if the exact set of governing equations is unknown, the 
Buckingham-Pi theorem describes a method for computing dimensionless parameters from 
given variables. 

Let us consider that there are 𝑛 3 dimensional quantities to consider say mass, length and 
time. Suppose the model involves 𝑚 6 variables, denoted 𝑥 , 𝑥 , … … . , 𝑥 . In general, we 
can derive m – n e.g., 3 dimensionless groups, often denoted as 𝜋 -groups using the following 
steps: 

 Determine the dimensions for all variables 𝑥 , 𝑥 , … … . , 𝑥  

 Select 𝑛 of the variables - say 𝑥 , 𝑥 , and  𝑥 . These 𝑛 variables are called the repeating 
variables and will appear in all the 𝜋 terms.  

 Now choose one other variable - say 𝑥 . Some combination of 𝑥 , 𝑥 , 𝑥  and 𝑥  is 
dimensionless and forms the first 𝜋 term or dimensionless group. 

 Now use 𝑥 , 𝑥 , 𝑥  and 𝑥  and repeat the process until there are no more variables left. 

 Once we figure out all the dimensionless groups, we can describe the relationship 
between the variables as a relationship between the various groups. 

Note: We have to deal with certain constraints on the choice of variables: 

ʘ Recurring variables cannot be dimensionless. 

ʘ The total dimension of two recurring variables cannot be the same.  

ʘ Buckingham's theorem works as a formula for calculating sets of dimensionless 
numbers, but it doesn't state anything about their physical significance, though. 



ʘ Non-dimensional groups can adopt any functional structure once they have been 
determined. 

The Buckingham-Pi theorem is not limited to a specific field and gives a mathematical 
framework for creating non-dimensional groups for a physical quantity. To interpret and 
appropriately utilise non-dimensional groups in a subsequent examination of any model, we 
need to understand the physics of the underlying problem. 

Table S1. Descriptive statistics of data1 

Chemical Compound Mean Std Min 
First 
Quartile Median 

Third 
Quartile max 

Ethyl acetate 118752.9 21349.67 89839.04 101647.6 113534.7 136361.2 167570.1 

Ethyl 2-methylpropanoate 243.5829 84.99485 145.1913 182.9255 232.0147 265.3345 416.2976 

Ethyl butanoate 280.5432 80.89879 186.1078 229.3697 273.9664 306.2146 544.9659 

Ethyl 3-methylbutanoate 35.95041 12.94038 15.2404 28.58317 33.3496 39.86595 64.1671 

2-Methylpropan-1-ol 61148.66 8743.97 36696.52 56818.85 60666.13 67206.51 74067.52 

3-Methylbutyl acetate 160.5069 42.79374 112.1783 132.0359 146.6869 185.9975 278.792 

Ethyl pentanoate 1.473361 0.521735 0.9333 1.113375 1.25035 1.8235 2.7772 

3-Methylbutan-1-ol 174224.5 29671.59 141578.2 152023.8 165589.5 181570.9 238397.1 

Ethyl hexanoate 437.1696 79.58736 318.5636 404.3063 422.5062 480.298 666.3077 

Hexyl Acetate 5.745911 6.926808 1.4614 2.471325 3.0604 6.848425 31.9158 

Ethyl 2-hydroxypropanoate 171857.2 31976.94 125956.6 148126.3 162451.5 191605.1 233843.2 

Hexan-1-ol 2104.15 431.7344 1421.54 1809.077 2024.099 2255.133 3051.925 

(E)-Hex-3-en-1-ol 77.02175 13.3867 48.9605 69.40158 75.5357 81.10418 102.2955 

Ethyl heptanoate 2.029622 0.378561 1.4039 1.817275 2.0112 2.196775 3.0845 

(Z)-Hex-3-en-1-ol 45.7253 19.23528 24.0479 38.87183 41.4003 50.13237 112.4569 

Heptan-1-ol 43.32062 8.036723 26.288 39.2958 42.8614 47.29363 56.8897 

Ethyl octanoate 575.3734 95.35276 389.6934 516.971 592.0891 643.6546 721.3681 

Benzaldehyde 14.14813 13.38348 0.1657 4.100625 11.48415 17.82288 53.6889 

Ethyl decanoate 274.8226 101.5478 65.7652 207.8458 262.4152 341.4423 461.8009 

2-Phenylethan-1-ol 36241.13 18696.78 23003.95 25283.02 30544.65 37095.61 101412.6 

2-Methylpropyl acetate 73.18496 21.40754 42.7031 58.8575 67.1782 80.7205 119.9842 

Ethyl 2-methylbutanoate 31.79282 9.718278 19.4123 26.34065 30.0029 34.45715 51.8135 

2-Methyl butyl acetate 253.6515 71.86906 163.1023 207.3275 229.2287 287.9782 462.3387 

(E)-Hex-2-en-1-ol 15.25405 7.5614 5.3945 9.313375 14.45435 18.7158 30.4454 

3,7-Dimethylocta-1,6-dien-3-ol 4.112922 1.583573 2.2897 3.380725 3.804 4.190625 9.4554 

Octan-1-ol 67.23637 16.1202 31.7351 57.51248 67.7675 77.57065 99.1281 

3,7-Dimethyloct-6-en-1-ol 4.235667 1.570415 1.4807 3.248675 4.1157 5.4845 7.3192 

(2Z)-3,7-Dimethylocta-2,6-dien-1-ol 2.642422 0.951269 1.7874 1.950875 2.4888 2.86665 5.6756 

2-Phenethyl acetate 19.83248 11.12106 9.8963 13.5586 15.52795 20.4052 55.3471 
(E)-1-(2,6,6-Trimethylcyclohexa-1, 
3-dien-1-yl) but-2-en-1-one 1.834239 0.551174 0.9183 1.470525 1.83145 2.01625 3.1174 

2-Methoxyphenol 10.76286 3.364831 6.4268 8.416025 10.2497 12.23103 19.4331 

(2E)-3,7-Dimethylocta-2,6-dien-1-ol 4.229306 3.6886 1.258 2.229225 2.63435 4.604725 14.4553 
(E)-4-(2,6,6-Trimethylcyclohex-2-en-
1-yl) 
but-3-en-2-one 0.0605 0.008415 0.0481 0.055525 0.06035 0.063775 0.08 

Ethyl 3-phenylpropanoate 1.310433 0.644821 0.5328 0.8545 1.0302 1.66715 3.1082 
(E)-4-(2,6,6-Trimethylcyclohexen-1-
yl) 1.360783 0.103078 1.1948 1.276375 1.37905 1.4196 1.5425 



but-3-en-2-one 

Phenol 8.232989 2.009847 5.9453 6.723425 7.6179 9.285425 13.011 

4-Ethyl-2-methoxyphenol 3.113858 4.03652 0.5848 0.932 1.22235 3.5254 15.0148 

Ethyl (E)-3-phenylprop-2-enoate 3.76615 2.719918 1.2295 2.0104 2.3987 5.04705 11.1255 

2-Methoxy-4-prop-2-enylphenol 24.18552 3.91557 18.9405 21.68312 22.86525 25.60648 32.9726 

Methyl-2-aminobenzoate 3.839 1.404199 1.3255 2.97285 3.5465 5.108175 6.1837 

Acetic acid 620964.6 102939.8 451071.7 555058.1 594726.7 698778.2 864620.6 

2-Methylpropanoic acid 1898.17 669.7691 1227.35 1416.9 1854.848 2092.094 4175.823 

Butanoic acid 1112.333 285.595 817.807 955.3066 1032.99 1170.22 2120.864 

(Std standard deviation, min minimum, max maximum) 

 

 

Figure S1. Correlation among aroma compounds using Pearson correlation method 

  



 

Table S2. Descriptive statistics of data2 

Features count mean std min 25% 50% 75% max 
Ethanol 1000 13.76397 0.548334 12.26 13.56 13.95 14.06 14.78 

pH 1000 3.64243 0.072847 3.43 3.6 3.66 3.7 3.77 

Titratable acidity  1000 5.02108 0.216041 4.61 4.8375 5.09 5.18 5.55 

Total Sulphur 1000 0.05232 0.014312 0.03 0.04 0.05 0.06 0.1 

Reducing Sugars  1000 0.4201 0.115927 0.23 0.32 0.42 0.5 1.17 

Total Phenolics 1000 1.70518 0.412594 1.06 1.29 1.73 1.9925 2.58 

(TA stands for titrable acidity) 

 

Table S3. Descriptive statistics of data3 

Features count mean std min 25% 50% 75% max 
Titratable acidity  1000 5.28859 0.166021 4.89 5.2 5.29 5.3725 5.85 

Total Sulphur 1000 0.04516 0.007657 0.03 0.04 0.04 0.05 0.06 

Total Phenolics 1000 1.75465 0.473115 1.37 1.51 1.60 1.76 3.91 

Reducing Sugars  1000 0.51487 0.407983 0-00 0.34 0.39 0.50 2.57 

pH 1000 3.69401 0.054661 3.56 3.65 3.70 3.74 3.79 

Ethanol 1000 13.69208 0.259770 13.25 13.49 13.72 13.87 14.27 

         
 

  



Table S4: Physiochemical Dataset for case study 1 and case study 2. Standard parameters 
estimated for the 18 wines are coded as: RS = reducing sugars; TA = titratable acidity; Total 
phenolics = a measurement of the concentration of all phenolic material present in the wine 
and expressed as mg gallic acid equivalents/L 

Wine ID 
Set A 

TA 
(g/L) 

Total 
Sulphur 
(g/L) 

Total 
phenolics   
(g 
GAE/L) 

Reducing     
sugar(g/L) 

pH 
Ethanol 
(v/v%) 

Wine 
ID Set 
B 

TA 
(g/L) 

Total 
Sulphur 
(g/L) 

Total 
phenolics   
(g 
GAE/L) 

Reducing   
sugar 
(g/L) 

pH 
Ethanol 
(v/v%) 

WAR16 5.17 0.0304 1.9172 0.53 3.6 14.78 OQRB 5.59 0.0649 1.435 0.29 3.77 14.27 

MCH16 5.47 0.0448 2.4327 0.69 3.5 14.29 OGG 5.33 0.0439 1.416 0.37 3.7 13.53 

WCR16 4.87 0.0336 2.4501 0.33 3.66 14.43 OFCP 4.89 0.0420 1.611 0.34 3.79 13.84 

WE16 4.61 0.0496 2.2304 0.33 3.72 13.74 OWTB 5.47 0.0290 1.693 0.27 3.61 13.45 

OFRB316 4.98 0.0576 1.6153 0.3 3.61 13.92 OM 5.34 0.0519 1.367 0.34 3.65 13.91 

OFRCP16 5.36 0.0352 1.6565 0.48 3.53 14.32 OMCO 5.45 0.0290 1.795 2.57 3.72 13.68 

MG16 5.55 0.0376 2.1550 0.3 3.52 14.26 MCHPC 5.3 0.0380 3.911 0.49 3.67 13.25 

MG13 4.62 0.0496 1.3122 0.41 3.72 13.47 MGM 5.38 0.0439 1.559 1.13 3.72 13.76 

CG16 4.63 0.0528 1.2880 0.32 3.73 13.99 MVA 5.27 0.0509 1.54 0.52 3.75 14.03 

OMD16 5.04 0.0592 1.0576 0.47 3.43 12.75 MSCOR 5.25 0.0360 2.465 0.57 3.65 13.46 

NN16 5.09 0.048 2.1465 0.23 3.67 13.97 MGC 5.13 0.0559 1.768 0.4 3.62 13.26 

WPP16 5.19 0.04 1.7959 0.27 3.7 13.97 MA 5.85 0.0350 2.033 0 3.56 13.61 

WPP13 4.7 0.08 1.6559 0.38 3.77 12.26 WTT 5.59 0.0330 1.42 0.33 3.67 13.5 

CPB16 5.15 0.0512 2.5812 0.52 3.6 14.16 WCR 5.4 0.0619 1.419 0.5 3.71 12.88 

MPR16 5.49 0.0528 2.0270 0.48 3.66 14.54 WCR 5.87 0.0509 3.465 0.6 3.79 14.51 

OQR16 5.43 0.096 1.7850 0.54 3.55 13.36 WPL 4.73 0.0430 1.587 1.36 3.8 13.7 

OQR13 4.95 0.0624 1.1163 0.69 3.65 13.83 WTKJM 5.72 0.0459 1.605 0.25 3.62 13.59 

NS16 5.33 0.0512 1.3921 1.17 3.77 13.2 WAR 5.15 0.0479 1.808 0.55 3.8 13.62 

 

S2. Deep Neural Network (DNN) in the present study: 

A deep neural network (DNN) is a form of neural network that has multiple neural layers. The 

feed forwards DNN, also known as the multiple layer perceptron, was used in this research. 

Feed forwards DNN, as the name implies, is made up of numerous hidden layers that only 

move in the feed forwards direction (no loop back). Weights, biases, and non-linear activation 

are the most significant scenarios in the feed forwards DNN. The parameters that alter input 

data within the network's hidden layers are known as weight in any neural network. On the 

other hand, bias cam considered as the analogous to the role of a constant in a linear function, 

whereby the line is effectively transposed by the constant value. First layer is always the input 

layer, and we need to find one or more patterns from the entities of the input, so that those 

patterns can be used to achieve the output. To achieve that, we need number of hidden layers 

together with activation function. At the most basic level, an activation function decides 

whether a neuron should be fired or not. It accepts the weighted sum of the inputs and bias as 

input to any activation function. Step function, Sigmoid, RELU, Tanh, and Softmax are 



examples of activation function. In order to achieve output, we need to adjust weights, biases 

such that, hidden nodes are activated by the activation function. Initially, weights and bias are 

randomly initialized. Then, we train the network with tens of thousands of inputs. In this study, 

DNN is used for three datasets (Data1, Data2, Data3) using 5 layers. Data1 contains input 

dimension of 14, on the other hand, Data2 and Data3 comprise of 6 input dimensions. In case 

of Data1, RELU function was used as the activation function followed by ELU in next three 

layers. Furthermore, 64 units were used in the first and second layer, however, units in dense 

layer 3 and 4 contains 64 and 32 units, respectively. The density layer of any neural network's 

dense layer determines the size of the dense layer's output. DNN with Data, on the other hand, 

has 64 units in the first three dense layers and 8 units in the fourth dense layer, with the RELU 

activation function utilised in all dense layers. Furthermore, the first two dense layers of DNN 

with Data 3 include 128 units, followed by 64 units in the third and fourth dense levels. In 

addition to that, similar activation function as in case of DNN with Data 1 were used.  Finally, 

last layer of all three models consists of only one layer as output layer. We also used optimizers 

in this study such as RMSprop, and Adam. Optimizers in any DNN is necessary because it 

modifies the attributes of the network such as weights and learning rate. The RMSprop 

optimizer restricts the oscillations in the vertical direction. Therefore, we can increase our 

learning rate and our algorithm could take larger steps in the horizontal direction converging 

faster. On the other hand, ADAM combines the property of AdaGrad and RMSProp algorithms 

to provide an optimization algorithm that can handle sparse gradients on noisy problems. 

Additionally, DNN models were implemented at 2000 Epochs which represents one iteration 

over the entire dataset. However, early stopping was used to find the appropriate results at low 

epochs but not more than 2000 epochs. In other words, early stopping is the regularization 

technique that stops training if, for example, the validation loss reaches a certain threshold. 

After building and training of the DNN, there is always requirement of evaluators to judge the 

model performance, these evaluators also known as the loss metric and are Regression loss 

function, mean squared error, mean absolute error (MAE), and binary cross entropy loss. 

Present study is the regression-based study, hence, we used MAE as the loss metric to evaluate 

the performance of the model.   

  



S3.  

Pseudocode of the optimisation programme to calculate possible combination in order to 
get quality indices 

Input:  
Nd = the number of essential modulators; 
Nf = the number of formulae;  
Nb = the of bottles (18 bottles);  
D[i][j] = null; //Variable for essential modulators 
C[i][j][k] = null; //Variable for possible combination 
Output: set of optimal values 
Initialisation; 
 
for i = 1 to Nd do  

for j = 1 to Nf do 
D[i][j] = Calculation following formular of each modulator; 

 end for i 
 set j = 1; 
end for j 
 
while (! possible combination ended) 
for i = 1 to Nd do  

for j = 1 to Nf do 
for k = 1 to Nb do 
C[i][j][k] = calculating possible combination; 
end for k 
set k = 1; 

 end for i 
 set j = 1; 
end for j 
Record combination into the database; 
end while 
 
// selection of the optimal combination 
Get data from database; 
while (! possible combination ended) 

calculating distance between each combination and the experts’ observations by 
Euclidian distance; 

 update Euclidian distance value to the combination; 
End while 
ascending order of Euclidian distance value; 
get the optimal values; 
 


