
Table S1. The list of scientific reports analyzed by the Natural Language
Processing

Number Title Journal Authors/year

1 Role of Sensory Evaluation in Consumer
Acceptance of Plant-Based Meat Analogs
and Meat Extenders: A Scoping Review

Food Fiorentini et al.
(2020)

2 Drivers and Inhibitors in the Acceptance
of Meat Alternatives: The Case of Plant

and Insect-Based Proteins

Food De Koning et
al. (2020)

3 Nutritional, Microbial, and Sensory
Evaluation of Complementary Foods
Made from Blends of Orange-Fleshed

Sweet Potato and Edible Insects

Food Agbemafle et
al. (2020)

4 Impact of Fermentation and Phytase
Treatment of Pea-Oat Protein Blend on

Physicochemical, Sensory, and Nutritional
Properties of Extruded Meat Analogs

Food Kaleda et al.
(2020)

5 Physicochemical Properties and
Consumer Acceptance of Bread Enriched

with Alternative Proteins

Food García-Segovia
et al. (2020)

6 Meat Quality Derived from High
Inclusion of a Micro-Alga or Insect Meal

as an Alternative Protein Source in
Poultry Diets: A Pilot Study

Food Altmann et al.
(2018)

7 Consumer perceptions of conventional
and alternative protein sources: A mixed-
methods approach with meal and product

framing

Appetite Possidónio et
al. (2021)

8 School children cooking and eating insects
as part of a teaching program - Effects of

cooking, insect type, tasting order and
food neophobia on hedonic response

Food Quality and
Preference

Chow et al.
(2021)

9 Importance of additional information, as a
complement to information coming from

packaging, to promote meat substitutes: A
case study on a sausage based on

vegetable protein

Food Quality and
Preference

Martin et al.
(2021)

10 Structuring the meat analogue by using
plant-based derived composites

Journal of Food
Engineering

Yuliarti et al.
(2021)

11 Effects of Maillard-reacted beef bone

hydrolysate on the physicochemical
properties of extruded meat alternatives

Journal of Food
Science

Chiang et al.
(2020)

12 Edible mushroom mycelia of Pleurotus
sapidus as novel protein sources in a
vegan boiled sausage analog system:

functionality and sensory tests in
comparison to commercial proteins and

meat sausages

European Food
Research and
Technology

Stephan et al.
(2018)

13 Towards more sustainable meat
alternatives: How technical parameters

affect the sensory properties of extrusion
products derived from soy and algae

Cleaner Production Grahl et al.
(2018)

14 Block protocol for conventional profiling
to sensory characterise plant protein

isolates

Food Quality and
Preference

Cosson et al.
(2020)

15 Alternative protein sources in Western
diets: Food product development and

consumer acceptance of spirulina-filled
pasta

Food Quality and
Preference

Grahl et al.
(2020)

16 Older Consumers’ Readiness to Accept
Alternative, More Sustainable Protein

Sources in the European Union

Nutrients Grasso et al.
(2019)

17 Plant protein-based alternatives of
reconstructed meat: Science, technology,

and challenges

Trends in Food
Science and
Technology

Sha & Xiong
(2020)

18 Product appropriateness, willingness to
try and perceived risks of foods

containing insect protein powder: A
survey of US consumers

International
Journal of Food

Science and
Technology

Ardoin et al.
(2020)

19 Partial and total replacement of meat by
plant-based proteins in chicken sausage:

evaluation of mechanical, physico-
chemical and sensory characteristics

Journal of Food
Science and
Technology

Kamani et al.
(2019)

20 Sensory attributes of edible insects and
insect-based foods - Future outlooks for

enhancing consumer appeal

Trends in Food
Science and
Technology

Mishyna et al.
(2020)

Supplementary File S1. PDF document text mining codes and
explanation produced by Cristhiam Gurdian

#’ ---
#’ title: Text mining trial
#’ author: Cristhiam Gurdian (cgurdi3@lsu.edu)
#’ date: 2021-January-06
#’ ---

install.packages("pdftools")
library(pdftools)
#set working directory to the folder that contains

the pdf files
#remove from the pdf names greek characters or

symbols because the lappy function will not work with
those

#create a vector of PDF file names using the

list.files function.
#The pattern argument says to only grab those files

ending with “pdf”:
files <- list.files(pattern = “pdf$”)#only works

if you have your working directory set to the folder
where you downloaded the PDF files

files #The “files” vector contains all the PDF file
names. We’ll use this vector to automate the process
of reading in the text of the PDF files.

#The pdftools function for extracting text is

pdf_text.
#Using the lapply function, we can apply the

pdf_text function to each element in the “files” vector
and create an object called “text”.

text <- lapply(files, pdf_text) #This creates a

list object with three elements, one for each document.
length(text)
#Each element in “text” is a vector that contains

the text of the PDF file.
lapply(text, length) #The length of each vector

corresponds to the number of pages in the PDF file.

####USING TEXT MINING PACKAGE FOR TEXT ANALYSIS
#First load tm package and then create a corpus,

which is a database for text.
#instead of working with the “opinions” text”

object we created earlier, we start over.

install.packages("tm")
library(tm)
corp <- Corpus(URISource(files),
 readerControl = list(reader =

readPDF))#The Corpus function creates a corpus. The
first argument to Corpus is what we want to use to
create the corpus.

#In this case, it’s the vector of PDF files. To do
this, we use the URISource function to indicate that
the files vector is a URI (Uniform Resource Identifier)
source.

we’re telling the Corpus function that the vector
of file names identifies our resources.

#The second argument, readerControl, tells Corpus
which reader to use to read in the text from the PDF
files (readPDF, a tm function).

#The readerControl argument requires a list of
control parameters, one of which is reader, so we enter
list(reader = readPDF).

#Finally we save the result to an object called
“corp”.

#Now that we have a corpus, we can create a term-
document matrix, (TDM) that stores counts of terms for
each document.

#The tm package provides a function to create a TDM
called TermDocumentMatrix.

library(SnowballC)
text.tdm <- TermDocumentMatrix(corp,
 control =

list(removePunctuation = TRUE,

stopwords = TRUE,
 tolower

= TRUE,

stemming = TRUE,

removeNumbers = TRUE,
 bounds

= list(global = c(3, Inf))))
#The first argument is our corpus. The second

argument is a list of control parameters.
#clean up the corpus before creating the TDM.

Remove punctuation, stopwords (eg, the, of, in, etc.),
convert text to lower case, stem the words,

#remove numbers, and only count words that appear
at least 3 times. We save the result to an object
called "text.tdm".

inspect(text.tdm[1:10,])#first 10 terms

#pdf_text function may preserve the unicode curly-

quotes and em-dashes used in the PDF files.

#manually use the removePunctuation function with

tm_map, both functions in the tm package.
#removePunctuation function has an argument called

ucp that when set to TRUE will look for unicode
punctuation.

corp <- tm_map(corp, removePunctuation, ucp = TRUE)
#re-create the TDM, this time without the

removePunctuation = TRUE argument.
text.tdm <- TermDocumentMatrix(corp,
 control =

list(stopwords = TRUE,
 tolower

= TRUE,

stemming = TRUE,

removeNumbers = TRUE,
 bounds

= list(global = c(3, Inf))))
inspect(text.tdm[1:10,])#first 10 terms

#findFreqTerms function to find words that occur

at least 100 times:
findFreqTerms(text.tdm, lowfreq = 100, highfreq =

Inf)

#To see the counts of those words we could save the

result and use it to subset the TDM.
#we have to use as.matrix to see the print out of

the subsetted TDM.
ft <- findFreqTerms(text.tdm, lowfreq = 100,

highfreq = Inf)
as.matrix(text.tdm[ft,])

#To see thews
ft.tdm <- as.matrix(text.tdm[ft,])
sort(apply(ft.tdm, 1, sum), decreasing = TRUE)

Supplementary File S2. Text (TXT) document mining codes obtained
from https://www.red-gate.com/simple-talk/sql/bi/text-mining-and-
sentiment-analysis-with-r/

library("SnowballC")
library("RColorBrewer")
library("wordcloud")
library("syuzhet")
library("ggplot2")
library("tm")

text <- readLines(file.choose())
TextDoc <- Corpus(VectorSource(text))

toSpace <- content_transformer(function (x ,

pattern) gsub(pattern, " ", x))
TextDoc <- tm_map(TextDoc, toSpace, "/")
TextDoc <- tm_map(TextDoc, toSpace, "@")
TextDoc <- tm_map(TextDoc, toSpace, "\\|")

TextDoc <- tm_map(TextDoc,

content_transformer(tolower))
TextDoc <- tm_map(TextDoc, removeNumbers)
TextDoc <- tm_map(TextDoc, removeWords,

stopwords("english"))
TextDoc <- tm_map(TextDoc, removeWords, c("s",

"company", "team"))
TextDoc <- tm_map(TextDoc, removePunctuation)
TextDoc <- tm_map(TextDoc, stripWhitespace)
TextDoc <- tm_map(TextDoc, stemDocument)

TextDoc_dtm <- TermDocumentMatrix(TextDoc)
dtm_m <- as.matrix(TextDoc_dtm)
dtm_v <- sort(rowSums(dtm_m),decreasing=TRUE)
dtm_d <- data.frame(word =

names(dtm_v),freq=dtm_v)
head(dtm_d, 50)

barplot(dtm_d[1:50,]$freq, las = 2, names.arg =

dtm_d[1:50,]$word,
 col ="lightgreen", main ="Top 50 most

frequent words",
 ylab = "Word frequencies")

set.seed(1234)
wordcloud(words = dtm_d$word, freq = dtm_d$freq,

min.freq = 5,
 max.words=100, random.order=FALSE,

rot.per=0.40,
 colors=brewer.pal(8, "Dark2"))

findAssocs(TextDoc_dtm, terms =

c("insect","flavor","like"), corlimit = 0.25)

syuzhet_vector <- get_sentiment(text,

method="syuzhet")
head(syuzhet_vector)
summary(syuzhet_vector)

bing_vector <- get_sentiment(text, method="bing")
head(bing_vector)
summary(bing_vector)

afinn_vector <- get_sentiment(text,

method="afinn")
head(afinn_vector)
summary(afinn_vector)

d<-get_nrc_sentiment(text)
td<-data.frame(t(d))
td_new <- data.frame(rowSums(td[2:253]))

names(td_new)[1] <- "count"
td_new <- cbind("sentiment" = rownames(td_new),

td_new)
rownames(td_new) <- NULL
td_new2<-td_new[1:8,]
quickplot(sentiment, data=td_new2, weight=count,

geom="bar", fill=sentiment,
ylab="count")+ggtitle("Survey sentiments")

barplot(
 sort(colSums(prop.table(d[, 1:8]))),
 horiz = TRUE,
 cex.names = 0.7,
 las = 1,
 main = "Emotions in Text", xlab="Percentage"
)

Table S2. The frequency of words in the text matrix (top 50)

Word Frequency Word Frequency
Meat 531 Plantbas 97
Protein 432 Also 96
Product 404 Sourc 96
Food 356 Compar 85
Consum 264 Tabl 84
Altern 188 Expect 83
Studi 181 Content 82
Insect 179 Pea 82
Tast 167 Structure 82
Flavor 165 Present 78
Use 161 Sustain 78
Sensori 154 Howev 77
Textur 142 Mrp 77
Differ 141 High 76
Attribute 136 Spirulina 76
Can 128 Posit 73
Accept 124 Addit 73
Sampl 121 Mayb 71
Increase 116 Process 71
Effect 111 Develop 69
Like 110 Show 69
Result 107 Analogu 68
Evalu 105 Plant 67
Signific 100 Subsitut 67

Supplementary File S3. The relevance (association levels) between
keywords and other words

