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and Odne S. Burheim 1,*
Variations with electrolyte composition in some thermodynamic and transport proper-

ties used in the heat to hydrogen model are here described. Pitzer and coworkers developed
semi-empirical expressions relating thermodynamic properties to e.g. solution composition
[1], cf. Saluja et al. for a concise overview of these equations [2]. The Pitzer equations are
used to model activity and osmotic coefficients, apparent molar enthalpies and apparent
molar heat capacities based on experimental data obtained at 25°C. As a simplification,
Pitzer parameters for 25°C solutions are also used at 10 and 40°C.

1. The Chemical Potential

The chemical potential of the dissolved salt, µe, is the partial derivative of the integral
Gibbs free energy, G, for the solution with respect to the moles of dissolved salt, ne:

µe =

(
∂G
∂ne

)
nw ,T,p

= µ0
e + νRT ln

(
meγ±

m0
e

)
(S1)

where T is the temperature, R is the gas constant, p is the pressure, nw is the number of moles
of water, ne is the number of moles of dissolved salt and µ0

e is a reference state chemical
potential at a molality of m0

e where the activity coefficient, γ0
±, is unity [3]. The reference

state is denoted by the superscript 0. The stoichiometric coefficient of a monovalent salt is
ν = (ν++ ν−), with ν+ and ν− being the stoichiometric coefficients for the cation and anion
of the salt in the dissolution reaction. The activity model has been applied for a monovalent
salt, giving the electrolyte chemical potential in terms of the molality, (me)ν = (mν+

+ mν−
− ),

and the mean activity coefficient (γ±)ν = (γν+
+ γ

ν−
− ). In a mixture of dissolved salt and

water, the chemical potential of water, µw, can be expressed using the osmotic coefficient, ϕ:

µw − µ0
w

RT
= ln aw = −νme Mw ϕ (S2)

where aw is the water activity and Mw is the molar weight of water in terms of kg mol−1

[3]. The chemical potentials of water and the dissolved salt are related through the Gibbs–
Duhem equation, and the excess Gibbs energy, Gex, of the single solute in 1 kg of water is
[4]:

Gex = νmeRT(1− ϕ + ln γ±) (S3)

The activity coefficient and the osmotic coefficient can be expressed using the Pitzer
model equations for a single monovalent salt dissolved in water [2]. The Pitzer expressions
for the activity coefficient and the osmotic coefficient are then [2]:

ϕ− 1 =
−1

RTme

(
∂Gex

∂nw

)
T,p,ne

= −Aϕ

√
me

1 + b
√

me
+ me[β0 + β1 exp{−α

√
me}] + m2

e Cϕ

(S4)
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ln γ± =
1

2RT
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∂ne

)
T,p,nw

=− 3Aϕ

[
2 ln(1 + b

√
me)

b
+

√
me

(1 + b
√

me)

]
+ 2me

[
β0 + β1

(
1− (1 + α

√
me − α2me/2) exp(−α

√
me)

)
/(α2me)

]
+

3
2

m2
e Cϕ

(S5)
where Aϕ is the Debye–Hückel slope, b = 1.2 and α = 2 are constants for monovalent elec-
trolytes, and β0, β1 and Cϕ are the Pitzer parameters [2]. Parameters fitted to experimental
data are required for the estimation of activity and osmotic coefficients, which for KCl is
shown in Table S1.

Table S1. Parameters for the activity and osmotic coefficient estimation [1,2], found by regression
with tabulated experimental data [5–7].

Salt β0 β1 Cϕ

KCl 4.8 · 10−2 2.1 · 10−1 −8.4 · 10−4

The Debye–Hückel slope is given by [8]:

Aϕ =
1
3

(
2πNAρw

1021

)1/2( e2c2

DkT

)3/2

(S6)

where NA is the Avogadro constant, ρw is the water (solvent) density, e is the elementary
charge, c speed of light in vacuum, D is the dielectric constant of the water solvent and k is
the Boltzmann constant. Derivatives of the Debye–Hückel slope with respect to temperature
are necessary for the enthalpy and heat capacity calculations. These slopes are [2]:

AH = 4RT2
(

∂Aϕ

∂T

)
p

AJ =

(
∂AH
∂T

)
p

(S7)

where AH and AJ are the slopes for the enthalpy and heat capacity, respectively. The slope
values were given by Clarke et al. [8].

2. Enthalpy

By the Gibbs–Helmholtz equation, the partial molar enthalpy, He, of the dissolved salt
is [3]:

He =

(
∂H
∂ne

)
p,me

= −T2 ∂

∂T

(µe

T

)
= H0

e − νRT2
(

∂ ln γ±
∂T

)
p,me

(S8)

where H0
e is the reference state partial enthalpy of the solute. Electrolyte solutions typically

use infinite dilution as the reference state, for which γ± = 1 and H0
e are, therefore, the

partial molar enthalpy at infinite dilution, H∞
e . The quantity L = H−H0 is often referred to

as the relative enthalpy, or the excess enthalpy, and can be formulated for the total solution
or the individual components. The total relative enthalpy of 1 kg of solvent is related to the
excess Gibbs energy through the Gibbs–Helmholtz equation [9]:

L = Hex = −T2
(

∂(Gex/T)
∂T

)
= νmeRT2 ∂

∂T

(
ϕ− ln γ±

)
p,me

(S9)
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An apparent relative molar enthalpy for the salt, φL, is typically introduced [9]:

φL =
L− nwL0

w
ne

=
L
ne

(S10)

where L is the extensive enthalpy of the whole solution relative to infinite dilution, while
L0

w is the molar enthalpy of the solvent at infinite dilution relative to the reference state,
which is zero. The apparent relative molar enthalpy is therefore a quantity which describes
any non-ideal behaviour of the dissolved salt. It is related to the integral heat of solution
for the dissolving of solid salt in water through:

∆mixH
ne

= ∆mixH0
e +

φL (S11)

where ∆mixH0
e is the heat of solution per mole of salt at infinite dilution [9]. The solution

for extensive enthalpy can be found through:

H = ne∆ f He + nw∆ f Hw + ∆mixH (S12)

where ∆ f Hi is the molar enthalpy of formation for pure component i, and the partial molar
enthalpies of the components follow from the derivatives of the extensive enthalpy with
respect to the number of moles of that component. The Pitzer model equations for the
apparent molar enthalpy were given by Saluja and Pitzer [2]. To ease the notation, it is
convenient to introduce the following factors [2]:

B = β0 + 2β1g(α
√

m) (S13)

where the function g(x) is:

g(x) =
(1− (1 + x) exp(−x))

x2 (S14)

The apparent molar enthalpy can then be calculated through the following Pitzer
model equations [2]:

φL =
AH
b

ln
(
1 + b

√
m
)
− 2RT2

(
mBL + m2CL

ϕ

)
(S15)

where the Debye–Hückel slope, AH , was given in Equation S7, and the factors BL and CL
ϕ

are given by:
BL = βL

0 + 2βL
1 g(α
√

m)

βL
0 =

(
∂β0

∂T

)
p

βL
1 =

(
∂β1

∂T

)
p

CL
ϕ =

(
∂Cϕ

∂T

)
p

(S16)

In the literature, Pitzer coefficients have been fitted to apparent relative molar enthalpy
data, mainly from the heat of dilution experiments. Relevant coefficients and data for KCl
are shown in Table S2 [9]. Furthermore, the formation enthalpy of pure solid KCl is ∆ f He =

Table S2. Parameters for the apparent relative molar enthalpy estimation from Silvester and Pitzer
[9]

Salt βL
0 βL

1 CL
φ

KCl 5.8 · 10−4 1.1 · 10−3 −5.1 · 10−5

−393.8 kJ mol−1 and for liquid water ∆ f Hw = −285.8 kJ mol−1 [10], and the infinite
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dilution mixing enthalpy is ∆mixH0
e = 17.22 kJ mol−1 [9]. Variations of the vaporisation

enthalpy of water in electrolyte solutions were explored in the Pitzer framework by Ge and
Wang [11]. A key assumption in this derivation is that the vapour pressure of the solvent is
related to the solvent activity:

P = awP0 (S17)

where P and P0 are the vapour pressures of the electrolyte solution and the pure solvent at
one temperature, respectively. The Clausius–Clapeyron equation is then used to relate the
temperature-dependent vapour pressure to the enthalpy of vaporisation:

d ln P
d(1/T)

= −
∆vapH

R

∆vapH = RT2
(

d ln P0

dT
+

d ln aw

dT

) (S18)

The reader is referred to Ge and Wang for a thorough description of the model equa-
tions that arise from these thermodynamic relations [11].

3. Heat Capacity

The partial molar heat capacity, Cp,e, of the dissolved salt is [3]:

Cp,e =

(
∂He

∂T

)
p,me

= C0
p,e − νR

(
T2 ∂2 ln γ±

∂T2 + 2T
∂ ln γ±

∂T

)
p,me

(S19)

where C0
p,e is the reference state heat capacity, or rather the partial molar heat capacity at

infinite dilution. The extensive heat capacity of the whole solution, Cp, can be written in
terms of the relative enthalpy as [12]:

Cp =

(
∂H
∂T

)
p,me

= C0
p +

(
∂L
∂T

)
p,me

(S20)

where we have that L/ne = φL. The apparent molar heat capacity for the salt, φCp,e, is:

φCp,e =
Cp − nwC0

p,w

ne
(S21)

where C0
p,w is the molar heat capacity of the solvent at infinite dilution. Combining these

equations leads to [12]:
φCp,e = C0

p,e +

(
∂φL
∂T

)
p,me

(S22)

The apparent molar heat capacity for the salt can be calculated using Pitzer model
equations [2,12]:

φCp,e = C0
p,e +

AJ

b
ln
(
1 + b

√
m
)
− 2RT2

(
mBJ + m2C J

ϕ

)
(S23)
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where the Debye–Hückel slope, AJ , was given in Equation S7, and the factors BJ and C J
ϕ

are given by [2]:

BJ = βJ
0 + 2βJ

1g(α
√

m)

βJ
0 =

(
∂βL

0
∂T

)
p

+
2
T

βL
0 βJ

1 =

(
∂βL

1
∂T

)
p

+
2
T

βL
1

C J
ϕ =

(
∂CL

ϕ

∂T

)
p

+
2
T

CL
ϕ

(S24)

where the temperature derivative of the apparent relative molar enthalpy for the salt, φL,
was given by Criss and Millero with Pitzer coefficients for KCl shown in Table S3 Addition-

Table S3. Parameters for the apparent molar heat capacity estimation from Criss and Millero [12]

Salt βJ
0 βJ

1 C J
ϕ

KCl 1.2 · 10−5 2.9 · 10−6 −9.2 · 10−7

ally, the partial molar heat capacities at infinite dilution for the components are necessary.
For KCl we have C0

p,e = −114.3 J K−1mol−1 and for water C0
p,w = −75.25 J K−1mol−1 [10].

4. Density

A first-order linear approximation can be used for the solution density [13]:

ρ = ρw +

(
∂ρ

∂me

)
∆me (S25)

where ρ is the solution density, ρw is the density of pure water, me is the molality and the
slope, (∂ρ/∂me) = 3.7 · 10−2, is estimated from experimental data in the literature [5,6].

5. Conductivity

Solution resistances are found using a three-parameter nonlinear model for the electric
conductivity, kappa, proposed by Zhang et al. [14]:

κ = k1mk2
e exp(−k3me) (S26)

where k1, k2 and k3 are adjustable parameters fitted to experimental data [5–7]. Coefficients
for KCl are shown in Table S4

Table S4. Coefficients for the conductivity model found by regression with tabulated experimental
data [5–7].

k1 k2 k3
KCl 9.9 9.3 · 10−1 4.0 · 10−2

The unit cell resistance, Runit, is calculated as:

Runit = β(r2 + r1)dchannel + RCEM + RAEM (S27)

where β = 1.56 is a shadow factor to account for spacers [13], r2 and r1 are the electric
resistivities of the concentrate and dilute respectively and RCEM is the area resistance of a
CEM and RAEM the area resistance of an AEM.
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