

Classification part:
(input: N set of examples; E set of attributes;
output: local coverage P of set N);
begin
 G := K; {set of objects not yet covered by elements from P}
 P := ∅;
 while G ≠ ∅ for
 begin
 P := ∅; {execute conditional rule}
 S := G; {set of objects covered by P}
 while (P = ∅) or not ([P] ⊆ K) for

 begin
 w := ∅; {best candidate for elementary condition}
 w_eval := ∞ ; {estimation of elementary condition according to selected measure}
 for each attribute a ∈ C for
 begin
if eval_new_p <w_eval then {check if condition new_p is better than w}

begin
w := new_p;
w_eval := new_eval_p;
end;
end;{for}
P := P ∪ {w}; {include best condition in conjunction P}
S := S ∩ [w]; {limit set of objects}
end; {while not ([P] ⊆ K)} for each elementary condition w ∈ P for
 if [P − {w}] ⊆ K then P := P − {w};
P := P ∪ {P};
G := K – ∪ P∈P[P];
end; {while G ≠ ∅}
Calculation part:

for i : = 1 to length (H) − 1 for
begin
v := (H(i) + H(i + 1)) / 2; {consider as limit points only if the points divide examples belonging to different classes}
S1 := {x ∈ S | f(a,x) < v}; {divide objects from S according to threshold v}
S2 := {x ∈ S | f(a,x) ≥ v};
eval_t := (|S1|/|S1 ∪ S2|)⋅Ent(S1) + (|S2|/|S1 ∪ S2|)⋅Ent(S2); {calculate conditional entropy} if eval_t < eval_best_
then
begin if |G ∩ S2| ≥ |G ∩ S1| then best_t := (f(a,x) ≥ v) else best_t := (f(a,x) < v);
eval_best_t := eval_t
end {if}
end

