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S1. Optimization Techniques 

Levenberg-Marquardt (LM). Sometimes referred to as the damped LSM, the Levenberg-

Marquardt (LM) algorithm has been commonly applied to obtain optimal values of the weights 

and biases of the multilayer perceptron (MLP) neural networks and find solutions for nonlinear 

least-square problems. Although the LM is known for a local minimum, rather than a global one, 

usually it is able to provide a solution even where the starting point is very far from the solution. 

The form of the performance function of the LM algorithm (sum of squares) eliminates the need 

for evaluating the Hessian matrix. Indeed, in such cases, the matrix is approximated  by computing 

the gradient as follows [1,2]: 

𝐻𝐻 = 𝐽𝐽𝑇𝑇𝐽𝐽 (S1) 

𝑔𝑔 = 𝐽𝐽𝑇𝑇𝑒𝑒 (S2) 

 



2 
 

in which, 𝐽𝐽 defines a Jacobian matrix of the first-order derivatives of the network errors with 

respect to the biases and weights; and 𝑒𝑒 introduces the vector of the network errors. The following 

Newton-like updating scheme is then applied with the Hessian matrix: 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − (𝐽𝐽𝑇𝑇𝐽𝐽 − 𝛿𝛿𝛿𝛿)−1𝐽𝐽𝑇𝑇𝑒𝑒 (S3) 

where 𝑥𝑥 refers to the connection weight; and 𝛿𝛿 is a constant value. The value of 𝛿𝛿 is declined over 

successive iterations, with exceptional increases when the performance function is enhanced upon 

a tentative step. Details on the use of the LM as a training algorithm for NNs are given in the 

literature [1]. 

 

Genetic Algorithm (GA).  GA is a powerful evolutionary technique for addressing complicated 

optimization problems having any type of objective function. First, an initial generation of 

solutions is represented by a population of randomly generated chromosomes. Subsequently, GA 

operators, including the crossover, reproduction, and mutation, are applied to evolve the initial 

chromosomes in an attempt to approach the optimum solution. In the framework of GA, the 

offspring production probability is measured by two parameters, namely the crossover factor (CF) 

and the mutation factor (MF), which refer to the probabilities of a binary section of the 

chromosomes changing from zero to one or vice versa, respectively [3–5]. The GA begins with 

generating an initial population of chromosomes (solution) and setting the MF and CF. It then 

evaluates a fitness value for each chromosome as 𝐹𝐹𝑖𝑖𝑘𝑘 = 𝑓𝑓�𝑋𝑋𝑖𝑖𝑘𝑘�,∀𝑖𝑖 and an index of the best 

chromosome as b = {1, 2, …, N}. The next stage is to apply the selection, crossover, and mutation 

operators to produce a new generation of solutions 𝑋𝑋𝑖𝑖𝑘𝑘+1, ∀𝑖𝑖, followed by re-evaluating the fitness 

values for the new solutions, 𝐹𝐹𝑖𝑖𝑘𝑘+1 = 𝑓𝑓�𝑋𝑋𝑖𝑖𝑘𝑘+1�, and finding the best chromosome, b1. Accordingly, 

if the fitness value is any better (smaller) than that of the previous generation, the new one replaces 
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the old one. This procedure is iterated until either the maximum number of iterations or the 

stopping criterion is met. 

 

Gravitational Search Algorithm (GSA). GSA is a special form of the so-called conjugate gradient 

method where the agents are considered as objects with their masses measuring their performance. 

Depending on their masses (i.e., the gravitational force), the objects tend to attract one another, 

leading to a universal movement towards the heavier objects. Representing better solutions, the 

heavier masses move at slower velocities than the lighter ones, ensuring the exploitation step of 

the algorithm. As far as the GSA is concerned, a mass is characterized by four characteristics, 

including its position and inertial mass as well as passive and active gravitational mass [6]. The 

mass position is indeed a possible solution of the problem, with the inertial and gravitational 

masses evaluated through a fitness function. Therefore, the GSA resembles an independent 

network of masses or a miniaturized artificial world of masses interacting, according to Newton’s 

laws of gravity and motion, as follows: 

• Law of gravity: there is an attraction (gravitational) force between any pair of massy 

particles, with the force being, directly and indirectly, proportional to their masses and 

distance, respectively. 

• Law of motion: the current velocity of a mass can be evaluated as its previous velocity 

plus/minus some velocity change. Accordingly, the velocity change (i.e., the acceleration) 

of a mass can be calculated as the force exerted onto the system divided by the inertial 

mass. 
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Imperialistic Competitive Algorithm (ICA). ICA is a novel GA-derived approach to optimization. 

Following the rules of social communities, the ICA was first introduced by Atashpaz-Gargari and 

Lucas, who highlighted its excellent efficiency in finding the global optima [7,8]. Referring to 

ICA, three terms have been commonly used: (1) cost function, which serves as a basis for the 

optimization process, (2) decade, which refers to a single iteration through the entire process of 

the ICA algorithm, and (3) country, which holds the same concept as the chromosome in the GA. 

Evaluating the cost function, the country for which the cost value is minimal represents an 

imperialist, with the rest of countries regulated as colonies [9]. The ICA works based on three 

essential operators: (1) competition, which makes it possible to control and even acquire colonies 

of other empires, (2) revolution, which is applied to relocate the countries if a cost value lower 

than that of the respective imperialist is found, in an attempt to avoid local minima and hence 

increase the chances of achieving the finest solution, and (3) assimilation, which follows a 

sociopolitical axis and pushes the colonies toward the imperialist. Based on the value of the total 

cost function, the competition operator is defined by the following equation [7,9]: 

𝑇𝑇𝐶𝐶𝑛𝑛 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛) + 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂{𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑠𝑠 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛)} (S4) 

where 𝑇𝑇𝑇𝑇 and 𝜂𝜂 denote the total cost value and contribution coefficient of the colonies in 𝑇𝑇𝑇𝑇, 

respectively. Equation (S5) gives the normalization of Equation (S4) as follows [8,9]: 

𝑁𝑁𝑁𝑁𝐶𝐶𝑛𝑛 = 𝑇𝑇𝐶𝐶𝑛𝑛 − max (𝑇𝑇𝐶𝐶𝑖𝑖) (S5) 

In Equation (S5), 𝑁𝑁𝑁𝑁𝑁𝑁 is termed as the normalized 𝑇𝑇𝑇𝑇. Next, for each empire, the possession 

probability is calculated by the following relationship: 
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𝑃𝑃𝑃𝑃𝑛𝑛 = �
𝑁𝑁𝑁𝑁𝐶𝐶𝑛𝑛

∑ 𝑁𝑁𝑁𝑁𝐶𝐶𝑖𝑖
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖=1

� (S6) 

where 𝑃𝑃𝑃𝑃𝑛𝑛 and 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 symbolize the possession probability and the imperialist size, respectively. 

Similar to the GA, the ICA conducts the empire selection; but this approach relies on a single 

probability value and there is no need for evaluating the cumulative distribution function. This is 

the main reason that the ICA selection technique is superior over conventional selection 

techniques, such as the roulette wheel method. In this respect, the following probability vector (P) 

can be introduced [8,9]: 

𝑃𝑃 = [𝑃𝑃𝑃𝑃𝑖𝑖]1×𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (S7) 

One should proceed to form a vector of random values and an integrated vector, as follows [8,9]: 

𝑅𝑅 = [𝑟𝑟𝑖𝑖]1×𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (S8) 

𝐷𝐷 = 𝑃𝑃 − 𝑅𝑅 = [(𝑝𝑝𝑝𝑝 − 𝑟𝑟)𝑖𝑖]1×𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (S9) 

Presently, our goal is to maximize the related indices in vector D for the colonies prepared in each 

empire. ICA procedural optimization will be terminated when the stopping criterion is 

accomplished [7]. 

 

Particle Swarm Optimization (PSO). PSO is a heuristic approach to the optimization that is 

inspired by the collective behaviors exhibited by animals such as birds, fishes, and insects [10–

12]. Here, a swarm of particles is used to represent a set of probable solutions, and the swarm is 
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iteratively updated to approach the optimal solution [13]. Accordingly, the terms particle and 

swarm in the PSO are equivalent to the terms chromosome and population in the GA, respectively 

[14]. The PSO differs from the GA so that it involves no evolutionary operator (e.g., crossover and 

mutation). In fact, PSO operates through the particles movements in the search space regulated by 

the currently optimal particles. In this technique, any particle is affected by the degree to which its 

topologically neighboring particles are deemed successful [13]. There are various kinds of the 

topological neighborhood, mainly including the physical and social neighborhoods and the queen 

[15]. More information concerning PSO can be found in the literature [16]. 

In a swarm, a particle is identified by its position (vector 𝑥𝑥𝑖𝑖(𝑡𝑡)) and velocity (vector 𝑣𝑣𝑖𝑖(𝑡𝑡)) that is 

updated as follows (written for the ith particle) [14,17,18]: 

𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) = 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡) +  𝑐𝑐1𝑟𝑟1 �𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)� + 𝑐𝑐2𝑟𝑟2 �𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑑𝑑(𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡)�, 

d = 1, 2, …, D 

(S10) 

 

In Equation (S10), pbest,id resembles the best previous position of particle 𝑖𝑖; 𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑑𝑑  denotes the 

best global position; 𝑤𝑤 is the inertia weight, 𝑐𝑐1 and 𝑐𝑐2 are the learning rates,; and 𝑟𝑟1 and 𝑟𝑟2 represent 

the random numbers between 0 and 1 [19]. Equation (S10) is mainly composed of three terms, 

namely social, cognitive, and inertia components [10,14,20]. The social component (including c2) 

measures the fitness value of a particle with reference to its neighboring particles, leading to the 

swarm throughout the search space accordingly. The cognitive term (including c1) sets the particle 

velocities in such a way to push them toward the previously best position. Denoted by 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡), 

the inertia component recalls the previous direction of movement and attempts to keep the particle 

on the same path at iteration t. Overall, these components define a path through which each particle 
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moves in the search space, where each particle is assigned a new position at each iteration by 

changing its previous position based on its velocity, as follows: 

 

𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡 + 1), 

d = 1, 2, …, D 

(S11) 

 

Ant Colony Optimization (ACO). Formulated by Dorigo, ACO is a population-oriented 

methodology developed based on the ants’ natural tendency toward finding the shortest route 

connecting their nest to food resources [21–23]. Once such paths (i.e., solutions) were identified, 

the ants mark them with pheromone to guide the entire population toward establishing a network 

of the most promising paths (solutions). Since the pheromone-based technique is initially valid for 

discrete domains, one needs to generalize it before it can be applied to continuous areas. This can 

be conducted by preparing a set of candidate solutions called a solution archive to build a so-called 

probabilistic Gaussian mixture model. The solution archive constantly stores a certain number of 

best solutions that are identified by the ACO. The set of best solutions is then improved by 

selecting the samples corresponding to the promising solutions out of the probabilistic model [24]. 

The version of the ACO that has been adapted to continuous domains is called the estimation of 

distribution algorithm (EDA); the name stems from the probabilistic model-solution archive 

evolutionary interactions [25–27]. The ACO optimization searches for the lowest value of the cost 

function by finding a vector x, x ∈ X ⊆ 𝑅𝑅𝑛𝑛𝑥𝑥. For this purpose, one should begin with an 

initialization stage where N solutions are randomly generated and stored in X followed by 

evaluating their cost values using the cost function. Subsequently, the initial solutions are ranked 

by their cost values and denoted by x1 (the best solution) through xN (the worst solution). As a next 
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step, each solution in the solution archive is given a weighting factor according to the following 

expression [24–26]: 

𝑢𝑢𝑖𝑖 ∝
1

√2𝜋𝜋𝛼𝛼𝛼𝛼
exp (−

1
2

(
𝑖𝑖 − 1
𝛼𝛼𝛼𝛼

)2) (S12) 

 

Subjected to the following condition: 

�𝑢𝑢𝑖𝑖 = 1
𝑁𝑁

𝑖𝑖=1

 (S13) 

Equation (S13) is then applied to build the probabilistic model in the form of a Gaussian mixture 

model: 

𝐺𝐺𝑗𝑗(𝑥𝑥[𝑗𝑗]) = �𝑢𝑢𝑖𝑖𝑁𝑁(𝑥𝑥[𝑗𝑗];  𝜇𝜇𝑖𝑖[𝑗𝑗],𝜎𝜎𝑖𝑖[𝑗𝑗] )
𝑁𝑁

𝑖𝑖=1

 (S14) 

where 

𝑁𝑁(𝑥𝑥; 𝜇𝜇,𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎
exp (−

1
2

(
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

)2) (S15) 

 

where j resembles the decision variable and 𝑥𝑥[𝑗𝑗] indicates the jth element in 𝑥𝑥. 

The model can be further completed by calculating its mean value and standard deviation through 

the following formulas: 

𝜇𝜇𝑖𝑖[𝑗𝑗] = 𝑥𝑥𝑖𝑖[𝑗𝑗] (S16) 

𝜎𝜎𝑖𝑖[𝑗𝑗] =
𝜉𝜉

𝑁𝑁 − 1
�|𝑥𝑥𝑖𝑖[𝑗𝑗] − 𝑥𝑥𝑖𝑖′[𝑗𝑗]|
𝑁𝑁

𝑖𝑖=1

 
(S17) 
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in which, 𝜉𝜉 > 0 determines the exploitation/exploration balance. 

In the next stage, M new offspring samples are generated, using a multidimensional model 𝑔𝑔 =

(𝐺𝐺1,𝐺𝐺2,𝐺𝐺𝑛𝑛𝑥𝑥), and added to the solution archive followed by assessing the objective function for 

the newly added samples. Through the next step called selection, a new solution archive is built 

by selecting M recent offsprings and n best solutions, where the best solutions represent the optimal 

solutions. Finally, the stopping criterion is checked, and the optimization process is terminated 

upon reaching the stopping criterion, with the last best solution acknowledged as the optimization 

result. The process is iterated if the stopping criterion is not met. Panels (a-e) of Figure S1 present 

the flowcharts of the GA, GSA, ICA, PSO, and ACO algorithms to implement the RBF modeling. 
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Figure S1a. Flow chart of the GA algorithm used in this study. 
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Figure S1b. Flow chart of the GSA algorithm employed in this research. 
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Figure S1c. Main steps of the ICA algorithm used in this research work. 

Initialize the empires 

Integrate colonies  

Revolution of some colonies  

Is there any colony in the empire that has lower 
amount than that of the imperialist? 

Imperialistic contest  

Calculate final cost of empires   

Interchange that imperialist and the 
colonies situation   

Does the empire exist without colony?  

Remove the empire  

Connect similar empires   

Meet the stopping criterion?  

End   

Yes    

No   

Yes    

No     

Yes    

No     



13 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1d. The flow chart of the PSO algorithm employed in this study. 
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Figure S1e. The flow chart of the ACO algorithm used in this study. 
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Table S1(a, b, and c) . Developed correlations by the GMDH model to estimate the IFT between 
CO2 and n-alkanes with different ranges of molecular weights of n-alkanes. 

 

a) MW of n-Alkane < 128 g.mole-1 

N7 26.8294 − 𝑃𝑃 × 7.48134 + 𝑃𝑃 × 𝑇𝑇 × 0.0140013 + 𝑃𝑃2 × 0.147394 

−𝑇𝑇2 × 0.000101526 

N6 −9.98585 + 𝑀𝑀𝑀𝑀 × 0.487082 −𝑀𝑀𝑀𝑀2 × 0.0024677 − 𝑃𝑃 × 1.99407 

+𝑃𝑃2 × 0.0766877 

N5 −28.145 + 𝑇𝑇 × 0.124901 − 𝑇𝑇 × 𝑁𝑁6 × 0.00856554 − 𝑇𝑇2 × 0.000123 

+𝑁𝑁6 × 3.88358 + 𝑁𝑁62 × 0.00707468 

N4 −18.4425 + 𝑀𝑀𝑀𝑀 × 0.38049 + 𝑀𝑀𝑀𝑀 × 𝑁𝑁7 × 0.00396706 

−𝑀𝑀𝑀𝑀2 × 0.00193676 + 𝑁𝑁7 × 0.757916 −𝑁𝑁72 × 0.0102219 

N3 0.0024115 + 𝑁𝑁4 × 2.10961 + 𝑁𝑁4 × 𝑁𝑁5 × 1.63255 − 𝑁𝑁42 × 0.93485 

−𝑁𝑁5 × 1.04462 −𝑁𝑁52 × 0.701968 

N2 −0.228756 − 𝑁𝑁7 × 𝑁𝑁3 × 0.121174 + 𝑁𝑁72 × 0.0455166 + 𝑁𝑁3 × 1.02621 

+𝑁𝑁32  × 0.0737283 

N1 −0.00807249 − 𝑁𝑁4 × 𝑁𝑁2 × 0.557415 + 𝑁𝑁42 × 0.26677 + 𝑁𝑁2 × 0.993729 + 𝑁𝑁22 

 × 0.289815 

IFT 2.07822 − 𝑇𝑇 × 0.00603416 + 𝑇𝑇 × 𝑁𝑁1 × 0.000913261 + 𝑁𝑁1 × 0.67174 

+𝑁𝑁12 × 0.0016223 

 

b) 128 g.mole-1 < MW of n-Alkane < 170 g.mole-1 

N7 479.704 −𝑀𝑀𝑀𝑀 × 5.23017 + 𝑀𝑀𝑀𝑀2 × 0.0180574 − 𝑇𝑇 × 0.481037 

+𝑇𝑇2 × 0.000619777 

N6 27.1628 − 𝑃𝑃 × 4.0094 + 𝑃𝑃 × 𝑇𝑇 × 0.00674831 + 𝑃𝑃2 × 0.0173212 

−𝑇𝑇2 × 6.16045 × 10−5 

N5 372.423 −𝑀𝑀𝑀𝑀 × 4.83892 + 𝑀𝑀𝑀𝑀2 × 0.016575 − 𝑃𝑃 × 2.01438 + 𝑃𝑃2 × 0.0508244 
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N4 0.00560628 − 𝑁𝑁5 × 𝑁𝑁6 × 0.232285 + 𝑁𝑁52 × 0.136166 + 𝑁𝑁6 × 0.892958 

+𝑁𝑁62 × 0.102019 

N3 −18.3745 + 𝑇𝑇 × 0.0505197 − 𝑇𝑇 × 𝑁𝑁5 × 0.00461681 + 𝑁𝑁5 × 2.65949 

N2 −2.87073 + 𝑁𝑁7 × 0.674778 + 𝑁𝑁7 × 𝑁𝑁3 × 0.0212069 − 𝑁𝑁72 × 0.0441496 

+𝑁𝑁3 × 0.940644 − 𝑁𝑁32 × 0.00706968 

N1 −3.01493 + 𝑃𝑃 × 0.72071 − 𝑃𝑃 × 𝑁𝑁2 × 0.0232241 − 𝑃𝑃2 × 0.0366532 + 𝑁𝑁2 × 1.14716 

IFT 0.00756756 − 𝑁𝑁4 × 0.0484979 + 𝑁𝑁1 × 1.04775 

 

c) MW of n-Alkane > 170 g.mole-1 

N6 18.8364 −𝑀𝑀𝑀𝑀 × 0.0221142 −𝑀𝑀𝑀𝑀 × 𝑙𝑙𝑙𝑙√𝑃𝑃 × 0.0205768 + 𝑀𝑀𝑀𝑀2 × 0.000126092 

−(𝑙𝑙𝑙𝑙√𝑃𝑃)2 × 5.95288 

N5 −2003.44 − 𝑙𝑙𝑙𝑙√𝑃𝑃 × 142.142 + 𝑙𝑙𝑙𝑙√𝑃𝑃 × 𝑙𝑙𝑙𝑙√𝑇𝑇 × 46.7788 − (𝑙𝑙𝑙𝑙√𝑃𝑃)2 × 5.72041 

+𝑙𝑙𝑙𝑙√𝑇𝑇 × 1415.91 − (𝑙𝑙𝑙𝑙√𝑇𝑇)2 × 247.465 

N4 −2958.91 + 𝑙𝑙𝑙𝑙√𝑇𝑇 × 1939.38 − 𝑙𝑙𝑙𝑙√𝑇𝑇 × 𝑁𝑁6 × 6.20335 − (𝑙𝑙𝑙𝑙√𝑇𝑇)2 × 317.554 

+𝑁𝑁6 × 19.7136 −𝑁𝑁62 × 0.0202 

N3 −1452.61 + 𝑙𝑙𝑙𝑙√𝑇𝑇 × 936.662 − 𝑙𝑙𝑙𝑙√𝑇𝑇 × 𝑁𝑁5 × 4.50199 − (𝑙𝑙𝑙𝑙√𝑇𝑇)2 × 150.864 

+𝑁𝑁5 × 14.8683 −𝑁𝑁52 × 0.0280386 

N2 3.8547 −𝑀𝑀𝑀𝑀 × 0.0496642 + 𝑀𝑀𝑀𝑀2 × 0.000147215 + 𝑁𝑁3 × 0.976768 

+𝑁𝑁32 × 0.000992048 

N1 5.57983 − 𝑙𝑙𝑙𝑙√𝑃𝑃 × 6.01913 + 𝑙𝑙𝑙𝑙√𝑃𝑃 × 𝑁𝑁2 × 0.326973 + (𝑙𝑙𝑙𝑙√𝑃𝑃)2 × 1.59601 

+𝑁𝑁2 × 0.386481 + 𝑁𝑁22 × 0.0162761 

IFT 0.152705 − 𝑁𝑁4 × 0.784481 + 𝑁𝑁4 × 𝑁𝑁1 × 0.211075 −𝑁𝑁42 × 0.0960804 + 𝑁𝑁1 

× 1.76233 − 𝑁𝑁12 × 0.114078 
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Figure S2. The average absolute relative error based on the models introduced in this study. 
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Figure S3. Absolute percent relative error (APRE) contour of IFT for: a) RBF-ICA, b) RBF-ACO, c) 
RBF-GA, d) RBF-PSO, e) RBF-GSA, f) MLP-LM, and g) GMDH at different temperatures and MWs of 
n-alkanes. 
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Fig S4. Experimental data versus RBF-ICA predictions of IFT between CO2 and n-alkane: a) training 
subset, and b) testing subset 
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