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General Information

All reagents were purchased from commercial sources and were used without further purification.
Compounds 1-4 and 12-14 were synthesized as described by us previously [10]. 1,4-Dioxane for the microwave-
assisted Suzuki cross-coupling reaction was deoxygenated by bubbling argon for 1 h.

The 'H and *C NMR spectra were recorded on a Bruker DRX-AVANCE-500 and AVANCE-600 instruments
using MesSi as an internal standard. Elemental analysis was carried on a Eurovector EA 3000 automated analyzer.
High resolution mass spectrometry was performed using a Bruker maXis Impact HD spectrometer. Melting points
were determined on Boetius combined heating stages and were not corrected.

Flash-column chromatography was carried out using Alfa Aesar silica gel 0.040-0.063 mm (230-400 mesh),
eluting with chloroform. The progress of reactions and the purity of compounds were checked by TLC on Sorbfil
plates (Russia), in which the spots were visualized with UV light (254 or 365 nm).

Microwave experiments were carried out in a Discover SP unimodal microwave system (CEM, USA) with a
working frequency of 2.45 GHz and the power of microwave radiation ranged from 0 to 300W. The reactions were
carried out in a 35 mL reaction tube with the hermetic silicone cork. The temperature of the reaction was monitored
using an inserted IR sensor by the external surface of the reaction vessel.

Thermogravimetric analysis (TGA) was performed using a NETZSCH TG 209 F1 Iris in a temperature range
35-520°C. A sample in an AlQOs crucible was heated with a constant heating rate, 10 K/min, in a dynamic
atmosphere of air (gas flow 30 mL/min). The argon flow (20 Ml/min) was used to protect the functional elements of
the TGA. The evolved gas was analyzed by QMS 403C Aéolos mass-spectrometric unit coupled with the
thermobalances. The ionization electron energy was 70 eV; the ion currents were registered for mass numbers (the
mass-to-charge ratio) in the range from 1 to 299 a.m.u.

Absorption spectra of solutions of compounds were recorded (1.0-3.0)x10 M on a Shimadzu UV-2401PC
dual-beam spectrophotometer and Cary 5000 UV-Vis-NIR spectrophotometer. Fluorescence spectra of solutions
were recorded on a Varian Cary Eclipse fluorescence spectrophotometer. IR spectra of the dye powders and dyes
adsorbed on TiOznanoparticles were recorded on a Spectrum One Fourier transform IR spectrometer (Perkin Elmer)
equipped with a diffuse reflectance attachment (DRA) in the frequency range 3600+1200 cm!. Spectrum processing
and band intensity determination were carried out using the special software supplied with the spectrometer. All
measurements were performed at room temperature (20 + 2 °C).

Electrochemical studies of synthesized molecules were carried out using the PAR (Princeton Applied
Research) 273 potentiostat/galvanostat. The standard three-electrode cell equipped with a SU-2000 glassy carbon
disc (0.0078 cm?) pressed into Teflon as a working electrode, Ag quasi-reference electrode, and a platinum grid (1

cm?) as a counter electrode was employed. The cyclic voltammograms (CV) were registered in anhydrous CH2Cl
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with 1-2-10% M of analyzed compound and 0.IM tetrabutylammonium hexafluorophosphate as supporting
electrolyte under high purity argon atmosphere at a scan rate in the range from 0.05 to 1.0 V/s. To HOMO-LUMO
energies calculation, the potential of the reference electrode was calibrated by using the ferrocene/ferrocenium
(Fc/Fc*) redox couple Eiz(Fc/Fc*) (that was estimated by the CV data as 0.2 V), which has a known oxidation
potential of +4.8 eV.

The HOMO and LUMO energy values were estimated from the onset potentials of the first independent
oxidation and reduction process, respectively, according to the following equations:

Enomo (eV) = — [Eoxorset — E12(Fe/Fc*) + 4.8]

Erumo (eV) = — [Ereaonset — E12(Fc/Fe*) +4.8],

where Ei2(Fc/Fct) is the half-wave potential of the Fc/Fc* couple (in this work experimentally estimated as
0.2 V) against the Ag electrode.

Fabrication and J-V characterization of DSSCs.

Three DSSC with different dyes were fabricated using a Solaronix test cell kit. TiOz electrodes were
immersed in 0.5 mM THF solution of D1-D3 dyes for 24 h in the dark then washed by 2-propanol to remove the
unabsorbed dye and dried at 50 °C for 10 min. After connecting two electrodes by polymer film in a thermal press
(Carver) at 100 °C for 3 min, the electrolyte solution in 3-propyl-1-methylimidazolium iodide (PMII, 0.6 M), lithium
iodide (Lil, 0.1 M), iodine (I, 0.05 M), and tert-butylpyridine (TBP, 0.5 M) in 3-methoxypropionitrile was injected
into space between two electrodes and injection hole was sealed. Photoanode active area of all investigated DSSCs
was 6 x 6 mm? (0.36 cm?). Additionally, we used a black mask during the electrical measurements for the accurate
performance assessment. The current density—voltage (J-V) characteristics of fabricated solar cells were determined
under irradiation (100 mW/cm?) using a Newport 67005 Arc lamp light source with a Xe lamp. The |-V
characteristics were measured using a Keithley 2450 source meter by applying voltage and measuring current.

Characterization of photoanodes by modulation spectroscopy.

Photoanodes were prepared in the following manner. TCO22-15 glass (2.9x2.9 cm? pieces) coated with a
conductive indium tin oxide (specific surface resistivity about 15 ()/sq, Solaronix) was purified by ultrasonication in
organic solvents (isopropanol and acetone) and distilled water, and then dried at 50 °C in air. Application of
Tinanoxide D/SP paste (Solaronix), comprising a nanocrystalline TiO2, was performed by the standard "doctor
blade" procedure, using a stencil with a square hole of 6 x 6 mm? and a depth of ~90 um. After application of the
paste, raw photoanodes were dried at 50 °C in air, and then calcined in a muffle furnace at 450 °C for 1 h with
heating rate of 3 °C/min. The heat treatments were carried out in the air. The thickness of thus obtained TiO: film
was about 15 mm. Sensitizing of titanium dioxide was performed by soaking photoanodes in 0.5 mM THF solution
of dye (D1 and D3) for 24 h in the dark.

The photoelectrochemical characteristics of photoanodes were studied using a three-electrode PECC-2 cell
(Zahner Elektrik). The photoanode served as the working electrode. A platinum wire (5 cm?2) and a silver wire were
used as the auxiliary and quasi-reference electrodes. As electrolyte used acetonitrile solution of 0.5 M Lil + 0.05 M

.. The voltammetric measurements were performed with an IPC Pro MF potentiostat. The working electrode was
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illuminated with a Newport 96000 AM 1.5 solar spectrum simulator with power of 100 mW/cm?. The illumination
power at different distances was controlled with a Nova apparatus (OPHIR-SPIRICON Inc.). The time dependence
of the photoanode potentials under the open-circuit conditions and the photocurrents at the short-circuit potential
(transients) were measured under both illumination and in dark.

The recombination characteristics were studied using the methods of intensity modulated photocurrent
spectroscopy (IMPS) and intensity modulated photovoltage spectroscopy (IMVS) [11,12]. IMPS and IMPS
measurements were conducted on a ZAHNER’s CIMPS-QE/IPCE workstation. The working electrode was
illuminated with a tunable light-source, TLS03. IMVS were taken without superposition of external polarization, i.e.,

under open circuit (OC) conditions. IMPS were recorded under short-circuit (5C) conditions.
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Figure S1. 'H NMR (500 MHz, CDCls) spectrum of 6.
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Figure S5. 'H NMR (500 MHz, CDCls) spectrum of 9.
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Figure S6. 3C NMR (126 MHz, CDCls) spectrum of 9.
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Figure S7. '"H NMR (500 MHz, CDCls) spectrum of 10.
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Figure S11. '"H NMR (600 MHz, DMSO-ds) spectrum of D2.
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Figure S12. 3C NMR (151 MHz, DMSO-ds) spectrum of D2.
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Figure S14. ®*C NMR (151 MHz, CDCls) spectrum of D3.
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Figure S17. Photo of the device D1 attached to the measurement stand.
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