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Supplementary Information 
 
A. Spectral Sequences of Additional Toy Models 
 
A.1. Three Clusters 
 
Continuing, let us consider the three clusters shown in Supplementary Figure A1(left), where 
the green and blue clusters are separated by a small distance, while the red cluster is 
separated from the green and blue clusters by a large distance. In Supplementary Figure 
A1(right), we see a first persistent band gap (orange) corresponding to the gap between the 
green and blue clusters. Before the green and blue clusters merge at 𝜖𝜖 ≈ 1, the number of 
zero eigenvalues is 3, because all three clusters are distinct. As this gap closes, the second 
persistent band gap (yellow) can be seen, and this corresponds to the gap between the red 
cluster and the green-blue supercluster. Over a wider range of 𝜖𝜖 , the number of zero 
eigenvalues is 2, because the red cluster remains distinct from the green-blue supercluster. 
 

 
Figure A1: (left) In this example, we have three clusters of points: a red cluster of 40 points, a 
green cluster of 30 points, and a blue cluster of 30 points. The centers of these clusters are 
roughly at (0,0), (3,−1), and (3,1) respectively. (right) The spectral sequence of the graph 
Laplacian 𝐿𝐿0 as we increase the filtration parameter 𝜖𝜖. At each of the sampled values of 𝜖𝜖, 
we have 100 eigenvalues (horizontal blue bars). The red lines connect the 𝑛𝑛th eigenvalue 𝜆𝜆𝑛𝑛 
at 𝜖𝜖𝑚𝑚 with the 𝑛𝑛th eigenvalue at 𝜖𝜖𝑚𝑚+1. The integer in blue at the bottom of each band of 
eigenvalues is the number of zero eigenvalues.  
 
At 𝜖𝜖 = 1.439, there are only 2 zero eigenvalues, but the first persistent gap Δ𝜆𝜆 is the largest 
here. The first nonzero eigenvalue is 𝜆𝜆1 = 1.076, which tells us that the neck between the 
persistent green and blue clusters consists of no more than 60 links. The second persistent 
gap Δ𝜆𝜆 is largest around 𝜖𝜖 = 3. Thereafter, a narrow neck forms between the persistent red 
cluster and the green-blue supercluster, as suggested by the small nonzero eigenvalue 𝜆𝜆1 at 
𝜖𝜖 ≈ 3.5 . Thus, when there are persistent clusters at multiple length scales, the spectral 
signature we expect to see is a succession of persistent gaps. 
 
A.2. Four Clusters with Two Different Gap Sizes 
 
Before we go on to explore other properties of the spectral sequence, let us consider four 
clusters separated by two different spatial gaps 𝑑𝑑1 < 𝑑𝑑2, i.e., clusters 1 (red) and 2 (green) 
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are 𝑑𝑑1 apart, clusters 3 (blue) and 4 (magenta) are 𝑑𝑑1 apart, while the two superclusters 
are separated 𝑑𝑑2. We consider two such configurations with different cluster sizes, to see if a 
secondary gap will appear away from 𝜆𝜆 = 0. As shown in Supplementary Figure A2, in the 
first case where all four clusters have the same number of points, we see only the first and 
second persistent gaps. Tracking the first persistent gap as 𝜖𝜖 increases in the first case, we 
find the four clusters reached the complete network limit at the same time, and have 
comparable maximum eigenvalues (𝜆𝜆max ≈ 25). In the second case, when the four clusters 
have different number of points, we see additional non-persistent gaps at larger eigenvalues 
𝜆𝜆, over and above the first and second persistent gaps. This happens because the four clusters 
still reach the complete network limit around the same time, where the band structure is the 
simplest. However, these clusters have different maximum eigenvalues ( 𝜆𝜆max ≈
10, 20, 30, 40 ). Surprisingly, the spectral sequence also allows us to tell whether the size 
distribution of persistent clusters is mono-disperse or polydisperse. 
 

 
Figure A2: (top left) Four clusters (each with 25 points) at the corners of a rectangle, so that 
the red and green clusters are close, as are the blue and magenta clusters, but the red-green 
supercluster is far from the blue-magenta supercluster. (top right) The spectral sequence of 
this configuration of clusters, showing the first persistent gap (associated with the small 
separation) and the second persistent gap (associated with the large separation). (bottom left) 
The same four clusters at the corners of a rectangle, except that the red cluster contains 10 
points, the green cluster 20 points, the blue cluster 30 points, and the magenta cluster 40 
points. (bottom right) In addition to the first and second persistent gaps (shown as dashed 
boxes), we find additional gaps due to the different cluster sizes. 
 
As we continue to track the second persistent gap as 𝜖𝜖 increases, we realized that we could 



 3 

tell that the first case is mono-disperse in terms of superclusters (both 50 points), and the 
second case involves two superclusters of different sizes (30 points and 70 points). These gaps 
away from 𝜆𝜆 = 0 are non-persistent, because they appear only over very short ranges of 𝜖𝜖. 
Non-persistent gaps become apparent only if (a) the clusters or superclusters have different 
sizes, (b) they have roughly the same density of points, and (c) their size distribution is close 
to being discrete. If there are many clusters or superclusters, with a broad distribution of sizes, 
or a broad distribution of densities, then non-persistent gaps may not appear in the spectral 
sequence. 
 
A.3. Two Clusters at Different Separations 
 
In Section A.1 and Section A.2, we explored different numbers of clusters separated by more 
than one length scale, but the separations are fixed. Here let us keep the distributions of 
points in two clusters fixed as shown in Supplementary Figure A3, and vary their separations 
to understand how the spectral signature changes. As we can see, when this separation is 
small, the two clusters overlap, and the spectral sequence resembles that from a single cluster. 
When the two clusters become nearly resolved (only minimal overlap), a weak persistent gap 
forms. This persistent gap becomes stronger as the separation becomes larger. In the right 
most spectral sequence of Supplementary Figure A3, we see at 𝜖𝜖 ≈ 2.5  that the band of 
nonzero eigenvalues becomes the narrowest. This is because the two clusters have the same 
density, and attain the complete network limit simultaneously. 
 

 
Figure A3: (top row) Two clusters, red and blue, each with fixed distributions of 50 data points. 
The separation between the two clusters increases going from left to right. (bottom row) The 
corresponding spectral sequences. 
 
A.4. Two Merging Clusters 
 
Instead of two clusters with rigid distributions of points closing in on each other, we are much 
more interested in the merging of two clusters through their interactions. When the two 
clusters interact, their centers approach each other, and their shapes are also likely to become 
distorted to form a neck. Therefore, in this subsection, we created an artificial dynamics 
situation of the merging process between two clusters by progressively adding more 
distortions to the distributions of data points. In the first frame shown in Supplementary 
Figure A4(a), we have two initially separated clusters, with no neck between them. In the 
second frame (Supplementary Figure A4(b)), interactions between the two clusters start to 
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pull some red points toward the blue cluster, and vice versa. In other words, the neck is in the 
process of being formed. Finally, in the third frame (Supplementary Figure A4(c)), the two 
clusters become connected through the narrow neck formed. In all three frames, the two 
clusters remain distinguishable. 

 
Figure A4: (top row: (a), (b), (c)) An artificial dynamics sequence of two initially separated 
clusters merging through the formation of a narrow neck between them. (bottom row: (d), 
(e), (f)) The corresponding spectral sequences. 
 
In Supplementary Figure A4(d), when the two clusters are distinct, the persistent gap 
disappears only after 𝜖𝜖 > 2. In contrast, before the neck is formed in Supplementary Figure 
A4(e), the persistent gap started disappearing earlier, at around 𝜖𝜖 = 1.5. Thereafter, the neck 
forms even earlier in Supplementary Figure A4(f). The most important change is the 
degeneracy of the zero eigenvalue. In Supplementary Figure A4(d) and Supplementary Figure 
A4(e), we can always find value(s) of 𝜖𝜖  such that the simplicial complex consisted of two 
components. In Supplementary Figure A4(f), we found no value of 𝜖𝜖 for which there are two 
zero eigenvalues. We confirmed this by using more discrete values of 𝜖𝜖 for the filtration. In 
other words, a two-cluster description of the data points is simply not robust (in the traditional 
sense, as well as in the spectral sense). 
 
A.5. Two Clusters in a Noisy Background 
 
Finally, let us also consider the situation of two clusters within a noisy background. In 
Supplementary Figure A5, we show the same two red and blue clusters, with 50 points each, 
in backgrounds with different noise levels. By noise level, we mean the number of black points 
(dust particles) that are not part of the red or blue clusters. When the noise level is low (5 
black points), the persistent gap between the red and blue clusters remains largely unaffected, 
although the spectral sequence looks like a distribution of data points with two gap scales 
(𝜖𝜖 ≈ 1 and 𝜖𝜖 ≈ 2). However, unlike in Supplementary Figure A1 and Supplementary Figure 
A2, the first gap scale is not real, in the sense that it is created by the noisy black background 
points. As the noise level increases, the area of the persistent gap decreases, but the length 
scale where the two clusters merge remains unchanged. This is reminiscent of doping a 
semiconductor, where we introduce additional energy levels inside the band gap that remains 
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more or less the same. 
 

 

 
Figure A5: (top row from left to right) Two clusters, with 50 red points and 50 blue points, in  
noisy backgrounds with 5, 10, 20, and 30 black points. (bottom row) The associated spectral 
sequences. 
 
B. Fiedler Eigenvector Analysis of Additional Toy Models 
 
B.1. Filtration Sequence for Three Clusters 
 
To ensure that the insights obtained above from the filtration of two clusters is sufficiently 
general, we also examined the Fiedler vector associated with the filtration of three clusters, 
as shown in Supplementary Figure A1. At 𝜖𝜖 = 1.351 , 𝜆𝜆0 = 0  is two-fold degenerate. The 
first eigenvector is associated with cluster 1 (red), while the second eigenvector is the 
symmetric superposition between cluster 2 (green) and cluster 3 (blue). The Fiedler 
eigenvector 𝑢𝑢�⃗ 1  associated with 𝜆𝜆1 = 2.685  is close to the antisymmetric superposition 
between the green and blue clusters. None of the components in the Fiedler vector are zero, 
but there are six nodes in 𝑢𝑢�⃗ 1 with smaller weights, with {43, 46, 55} belonging to the green 
cluster, and {84, 93, 99} belonging to the blue cluster. However, there appear to be more 
nodes in the neck. First, nodes in the green cluster with weight +0.140 have no links to any 
blue nodes, while those in the blue cluster with weight −0.140 have no links to any green 
nodes. Therefore, the remaining nodes 

{40, 43, 44, 46, 47, 48, 49, 53, 54, 55, 58, 59, 62, 63, 64, 65, 68, 69,  

71, 72, 73, 74, 75, 76, 77, 84, 87, 90, 93, 94, 95, 97, 98, 99} 

with absolute weights smaller than 0.140 should also be considered neck nodes. However, 
not all of them are equally important. For example, the green node 43 with weight +0.045 
is linked to 16 blue nodes, whereas the blue node 98 with weight −0.133 is linked only to 1 
green node (43). Therefore, an important takeaway message from this analysis is that the 
closer the absolute weight of a node to the maximum cluster weight, the closer it is to being 
a clustered node, and the less it contributes to the neck. 
 
Furthermore, the nodes {43, 46, 55, 84, 93, 99} are special: they form a complete bipartite 
network in which the green nodes {43, 46, 55} are linked to all the blue nodes {84, 93, 99}. 
We think of these six nodes as the core of the neck. If we keep only the green nodes 
{43, 46, 55} , the blue nodes can be expanded to include {76, 84, 93, 97, 99}  and still 
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produce a complete bipartite network. However, using the expanded list of blue nodes, no 
more green nodes can be added. On the other hand, if we keep only the blue nodes 
{84, 93, 99}, the list of green nodes can be expanded to {40, 43, 46, 55, 59, 62, 64} for the 
bipartite network to be complete. In Figure 14, we show the unexpectedly complex structure 
of the neck, with {43, 46, 55, 84, 93, 99} forming an inner core, while {40, 59, 62, 64} and 
{76, 97} form separate outer cores. 
 

 
Figure B1: The core structure of the neck between the green cluster 2 and blue cluster 3 for 
𝜖𝜖 = 1.351 for the three-cluster data set shown in Supplementary Figure A1. In this figure, we 
show the core structure in terms of a Venn diagram between a green set of neck nodes and a 
blue set of neck nodes. The green nodes {43, 46, 55} and the blue nodes {84, 93, 99} form 
a complete bipartite network with each other, and together represents the inner core of the 
neck. The green nodes {40, 59, 62, 64} and the blue nodes {76, 97} form two outer cores 
of the neck, in that they form complete bipartite networks only with the inner core. 
 
In line with the distinct neck interpretation proposed in Section 3.4.2, {43, 46, 55, 84, 93, 99} 
belongs completely to the neck 𝑛𝑛, which is in the process of absorbing more nodes from the 
green and blue clusters. Therefore, we expect that the complete bipartite core of the neck 
would enlarge to include {40, 59, 62, 64} and {76, 97} at a larger value of 𝜖𝜖. To test this 
hypothesis, we go to a larger filtration parameter 𝜖𝜖 = 2.023 (𝜆𝜆1 = 23.772), where 𝜆𝜆0 = 0 
remains two-fold degenerate, and their eigenvectors continue to represent the distinct red 
cluster, and the merged green-blue supercluster. At this filtration parameter, the inner core of 
the neck comprises the green nodes 

𝑛𝑛𝐺𝐺 = {40, 43, 44, 46, 47, 48, 49, 51, 54, 55, 58, 59, 62, 63, 64, 65, 68, 69} 

And the blue nodes 

𝑛𝑛𝐵𝐵 = {70, 71, 72, 73, 74, 75, 77, 84, 86, 87, 88, 90, 93, 94, 95, 96, 97, 98, 99}. 

As we can see, the inner core components {43, 46, 55}  and {84, 93, 99}  for 𝜖𝜖 = 1.351 
are nested in the inner core components for 𝜖𝜖 = 2.023. But while {40, 59, 62, 64} from the 
green outer core are completely nested in the larger inner core for 𝜖𝜖 = 2.023, only 97 from 
the blue outer core {76, 97} is now nested in the enlarged inner core. 
 
B.2. Persistence in a Noisy Background 
 
In Section 3.3.7, we analyzed the spectral sequences of two persistent clusters in backgrounds 
with different levels of noise. Instead of listing them, in this section we will visualize 
components of the Fiedler vector in the form of histograms to investigate how persistent the 
two clusters are. We start from the clean red and blue clusters (each having 50 data points). 
These are disjoint at 𝜖𝜖 = 0.656  and 𝜖𝜖 = 1.309 , but become connected at 𝜖𝜖 =
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1.962, 2.615, 3.267, 3.920.  As expected for the last four filtration parameters, the 
eigenvector 𝑢𝑢�⃗ 0 associated with 𝜆𝜆0 = 0 is a uniform superposition of all data points. 
 
In Supplementary Figure B2, we show histograms of the Fiedler components, and the links 
between data points, at the different filtration parameter values.  For 𝜖𝜖 = 1.962 and 𝜖𝜖 =
2.615,  corresponding to 𝜆𝜆1 = 0.622  and 𝜆𝜆1 = 9.963  respectively, the two clusters are 
clearly identifiable based on the signs of their Fiedler components, but there are no obvious 
neck components with zero values. At 𝜖𝜖 = 2.615 , the neck connecting the two clusters 
becomes distinguishable as Fiedler components close to zero, and their associated data points 
are colored green or cyan. At 𝜖𝜖 = 3.267, the neck becomes larger than the two clusters, and 
by 𝜖𝜖 = 3.920 , only a few points remain in the red and blue clusters. In this example, the 
distribution of Fiedler components changes from a bimodal distribution to a unimodal 
distribution as 𝜖𝜖  is increased. Tracking the changes in 𝜆𝜆1 = 0.622 → 9.963 → 43.231 →
76.940, we see this change occurring where 𝜆𝜆1 changes most rapidly with 𝜖𝜖. 
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Figure B2: (left) Histograms of the Fiedler components, and (right) which of the data points in 
two 50-member clusters (red and blue) are linked at filtration parameter values of (a)-(b) 𝜖𝜖 =
1.962 , (c)-(d) 𝜖𝜖 = 2.615 , (e)-(f) 𝜖𝜖 = 3.267 , and (g)-(h) 𝜖𝜖 = 3.920 . In this figure, the data 
points are colored according to their Fiedler components, with red being close to −0.10 , 
green being close to 0.00, and blue being close to +0.10. 
 
Next, we considered the situation where the two 50-point clusters are in a noisy background 
with 30 dust particles shown in the rightmost panel of Supplementary Figure B2. At 𝜖𝜖 =
0.656, we have 8 zero eigenvalues. One of the associated eigenvectors (zero eigenvectors) has 
nonzero components for the 50 red data points, along with 5 dust particles occurring within 
or close to the red cluster. We say therefore that this zero eigenvector represents the 50 red 
data points and 5 dust particles. Another zero eigenvector represents the 50 blue data points, 
along with 13 dust particles. The six remaining zero eigenvectors are various superpositions 
of the same 8 dust particles. From 𝜖𝜖 = 1.309 to 𝜖𝜖 = 3.920, 𝜆𝜆0 = 0 is non-degenerate, and 
as expected its eigenvector is the uniform superposition of all data points. 
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Figure B3: (left) Histograms of the Fiedler components, and (right) which of the data points in 
two 50-member clusters (red and blue) or 30 dust particles in the noisy background are linked 
at filtration parameter values of (a)-(b) 𝜖𝜖 = 1.30892 , (c)-(d) 𝜖𝜖 = 1.96173 , (e)-(f) 𝜖𝜖 =
2.61453 , (g)-(h) 𝜖𝜖 = 3.26734 , and (i)-(j) 𝜖𝜖 = 3.92015 . In this figure, the data points are 
colored according to their Fiedler components, with red being around −0.10, green being 
around 0.00 , and blue being around +0.10 . Moreover, data points belonging to the two 
clean clusters are shown as circles, whereas dust particles are shown as squares. 
 
To compare the noisy and the clean situations, we show in Supplementary Figure B3 
histograms of the Fiedler components, and the links between data points, at the different 
filtration parameter values. For 𝜖𝜖 = 1.309, 1.962, 2.615 , corresponding to 𝜆𝜆1 =
0.183, 0.622, 9.963  respectively, the two clusters are clearly identifiable based on their 
Fiedler components. As early as 𝜖𝜖 = 1.309, two data points belonging to the neck can be 
identified. In Supplementary Figure B3(b), one is colored yellow, and the other cyan. 
Interestingly, both are dust particles that have been incorporated into the red and blue 
clusters. As 𝜖𝜖 increases, the neck linking the two clusters becomes more prominent, and an 
increasing number of data points are colored green or cyan. Eventually, most data points 
become part of the neck, and a small number of points remain for the two original clusters. 
As the above is happening, the distribution of Fiedler components also changes from bimodal 
to unimodal. The crossover occurs at the point where 𝜆𝜆1 changes most rapidly with 𝜖𝜖. This 
progression is the same as for the clean situation. 
 
The main notable differences between the clean and noisy situations are as follows. First, the 
clusters in the clean situation are compact, close to circular, and remain at their maximum 
sizes over a broad range of 𝜖𝜖. In the noisy situation, the clusters continue to grow with 𝜖𝜖, by 
incorporating more and more dust particles. Because the dust particles appear in a 
background with a different density compared to the clusters, the clusters appear as if they 
are growing spikes as they absorb dust particles. This feature leads to the more important 
difference between the two situations, i.e., in the clean situation, a direct neck forms between 
the parts of the clusters closest to each other. As 𝜖𝜖 increases, this direct neck becomes fatter, 
but otherwise the same topologically. In the noisy situation, however, as 𝜖𝜖  increases, in 
addition to the formation of a direct neck, indirect necks also form between the clusters 
between spikes that are pointing toward each other, and thus always involve dust particles. 
The formation of direct and indirect necks between the two clusters lead to complex 
topologies in the region between them.  
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C. Spectral Sequences for Mar 2020 TWSE Crash 
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Figure C1. Filtration parameter ϵ versus eigenvalues. We studied them at eight prescribed 
𝜖𝜖 values, namely 𝜖𝜖 = 0.5, 0.8, 1.0, 1.2, and 1.4, 1.6, 1.8, and 2.0, respectively. The market 
data are collected from TWSE during 1 Aug 2019 to 30 Sep 2020, which covers the Mar 2020 
TWSE COVID-19 crash. The window size is six months. In the subfigures, the time window is 
indicated as YYYYMMDD of the starting date to YYYYMMDD of the ending date. 
 
 
D. Spectral Sequences for Sep 2018 TWSE Mini-Crash 
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Figure D1. Filtration parameter ϵ versus eigenvalues. We studied them at eight prescribed 
𝜖𝜖 values, namely 𝜖𝜖 = 0.5, 0.8, 1.0, 1.2, and 1.4, 1.6, 1.8, and 2.0, respectively. The market 
data are collected from TWSE during 1 Apr 2018 to 30 Apr 2019, which covers the Sep 2018 
mini crash. The window size is six months. In the subfigures, the time window is indicated as 
YYYYMMDD of the starting date to YYYYMMDD of the ending date. 
 
 
E. Spectral Sequences for Mar 2020 SGX Crash 
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Figure E1: Index versus eigenvalues. We studied them at eight prescribed 𝜖𝜖 values, namely 
𝜖𝜖 = 0.5, 0.8, 1.0, 1.2, and 1.4, 1.6, 1.8, and 2.0, respectively. The market data are collected 
from SGX between 1 Aug 2019 and 30 Jun 2021, which covers the 2020 COVID-19 crash. The 
window size is six months. In the subfigures, the time window is indicated as YYYYMMDD of 
the starting date to YYYYMMDD of the ending date. 
 
 
F. Spectral Sequences for Jan 2020 S&P 500 Crash 
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Figure F1: Index versus eigenvalues. We studied them at eight prescribed 𝜖𝜖 values, namely 
𝜖𝜖 = 0.5, 0.8, 1.0, 1.2, and 1.4, 1.6, 1.8, and 2.0, respectively. The market data are collected 
from S&P 500 between 1 Jun 2019 and 30 Dec 2020, which covers the 2020 COVID-19 crash. 
The window size is six months. In the subfigures, the time window is indicated as YYYYMMDD 
of the starting date to YYYYMMDD of the ending date. 
 
G.   Neck and Bridging Components for the Mar 2020 TWSE COVID-19 Crash 
 
Table G1: Components of the minor cluster in the four time windows at different filtration 
parameters. In this table, members of the minor cluster at a given 𝜖𝜖 are shown in italics, if 
they are found in the minor cluster of the succeeding 𝜖𝜖, and shown in bold, if they are found 
in the minor cluster of the preceding 𝜖𝜖. If a component is found across the minor clusters of 
the previous, present, and subsequent 𝜖𝜖, it is shown in bold italics. 

Time window 𝜖𝜖 = 1.2 𝜖𝜖 = 1.4 𝜖𝜖 = 1.6 𝜖𝜖 = 1.8 
1 Aug 2019– 
31 Jan 2020 

- 1333.TWO, 2719.TWO, 
2724.TWO, 3095.TWO, 
3191.TWO, 3211.TWO, 
3217.TWO, 3228.TWO, 
3373.TWO, 3444.TWO, 
4102.TWO, 4121.TWO, 
4131.TWO, 4171.TWO, 
4304.TWO, 4413.TWO, 
4419.TWO, 4735.TWO, 
4736.TWO, 5205.TWO, 
5212.TWO, 5245.TWO, 
5274.TWO, 5310.TWO, 
5543.TWO, 6101.TWO, 
6103.TWO, 6212.TWO, 
6228.TWO, 6236.TWO, 
6259.TWO, 6419.TWO, 
6457.TWO, 6569.TWO, 
8084.TWO, 8171.TWO, 
8418.TWO 

- '1258.TWO', '1597.TWO', 
'2729.TWO', '3092.TWO', 
'3114.TWO', '3131.TWO', 
'3213.TWO', '3252.TWO', 
'3265.TWO', '3285.TWO', 
'3306.TWO', '3362.TWO', 
'3374.TWO', '3388.TWO', 
'3402.TWO', '3438.TWO', 
'3492.TWO', '3511.TWO', 
'3529.TWO', '3551.TWO', 
'3552.TWO', '3577.TWO', 
'3615.TWO', '3632.TWO', 
'3663.TWO', '3687.TWO', 
'3689.TWO', '4113.TWO', 
'4120.TWO', '4129.TWO', 
'4138.TWO', '4188.TWO', 
'4401.TWO', '4420.TWO', 
'4433.TWO', '4510.TWO', 
'4541.TWO', '4542.TWO', 
'4549.TWO', '4609.TWO', 
'4721.TWO', '4754.TWO', 
'4953.TWO', '4971.TWO', 
'5102.TWO', '5227.TWO', 
'5287.TWO', '5291.TWO', 
'5306.TWO', '5351.TWO', 
'5364.TWO', '5371.TWO', 
'5392.TWO', '5410.TWO', 
'5425.TWO', '5450.TWO', 
'5452.TWO', '5488.TWO', 
'5508.TWO', '5529.TWO', 
'6026.TWO', '6113.TWO', 
'6143.TWO', '6150.TWO', 
'6151.TWO', '6171.TWO', 
'6203.TWO', '6207.TWO', 
'6217.TWO', '6218.TWO', 
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'6220.TWO', '6227.TWO', 
'6237.TWO', '6238.TWO', 
'6242.TWO', '6244.TWO', 
'6499.TWO', '6510.TWO', 
'8066.TWO', '8067.TWO', 
'8091.TWO', '8111.TWO', 
'8349.TWO', '8354.TWO', 
'8383.TWO', '8420.TWO', 
'8426.TWO', '8446.TWO', 
'8455.TWO' 

22 Sep 2019–
22 Mar 2020 

41, 83, 90, 135, 
145, 215, 260, 
263, 342, 355, 
367, 428, 449, 
555, 611, 628, 
655 

3, 40, 41, 66, 83, 
88, 90, 97, 135, 
145, 215, 224, 
231, 245, 255, 
260, 263, 301, 
302, 342, 347, 
351, 355, 367, 
428, 448, 449, 
505, 514, 519, 
530, 550, 555, 
580, 611, 628, 
653 

1333.TWO, 3095.TWO, 
3373.TWO, 4102.TWO, 
4413.TWO, 4419.TWO, 
6103.TWO, 6457.TWO 

3373.TWO, 4102.TWO, 
4419.TWO, 5310.TWO, 
6457.TWO 

15 Oct 2019–
15 Apr 2020 

3284.TWO, 4406.TWO, 
5398.TWO, 8415.TWO 

2724.TWO, 3095.TWO, 
4102.TWO, 4406.TWO, 
4413.TWO, 4419.TWO, 
4429.TWO, 5205.TWO, 
5310.TWO, 5543.TWO, 
6103.TWO, 8077.TWO 

4406.TWO, 4413.TWO, 
4419.TWO, 6103.TWO, 
8077.TWO 

3522.TWO, 4413.TWO, 
4419.TWO, 5314.TWO, 
6103.TWO, 8077.TWO 

1 Apr 2020–30 
Sep 2020 

- 1584.TWO, 1586.TWO, 
2067.TWO, 2718.TWO, 
2724.TWO, 2924.TWO, 
3067.TWO, 3073.TWO, 
3078.TWO, 3085.TWO, 
3093.TWO, 3095.TWO, 
3105.TWO, 3115.TWO, 
3162.TWO, 3188.TWO, 
3218.TWO, 3228.TWO, 
3268.TWO, 3272.TWO, 
3285.TWO, 3287.TWO, 
3293.TWO, 3310.TWO, 
3325.TWO, 3339.TWO, 
3379.TWO, 3465.TWO, 
3484.TWO, 3490.TWO, 
3498.TWO, 3516.TWO, 
3540.TWO, 3581.TWO, 
3594.TWO, 3629.TWO, 
3666.TWO, 3691.TWO, 
3707.TWO, 4198.TWO,       
4303.TWO, 4413.TWO, 
4429.TWO, 4523.TWO, 
4530.TWO, 4543.TWO, 
4549.TWO, 4609.TWO, 
4716.TWO, 4747.TWO, 
4924.TWO, 4933.TWO, 
4950.TWO, 5205.TWO, 
5206.TWO, 5310.TWO, 
5321.TWO, 5324.TWO, 
5355.TWO, 5432.TWO, 
5452.TWO, 5457.TWO, 
5460.TWO, 5468.TWO, 
5474.TWO, 5475.TWO, 
5508.TWO, 5529.TWO, 
5543.TWO, 5609.TWO, 
5820.TWO, 5902.TWO, 
6103.TWO, 6125.TWO, 
6126.TWO, 6134.TWO, 
6140.TWO, 6148.TWO, 
6187.TWO, 6194.TWO, 

- 3064.TWO, 3085.TWO, 
3095.TWO, 3230.TWO, 
3465.TWO, 3632.TWO, 
3707.TWO, 4406.TWO, 
4530.TWO, 4804.TWO, 
5475.TWO, 5601.TWO, 
6101.TWO, 6113.TWO, 
6148.TWO, 6233.TWO, 
6246.TWO, 6264.TWO, 
6462.TWO 



 37 

6195.TWO, 6198.TWO, 
6199.TWO, 6204.TWO, 
6212.TWO, 6220.TWO, 
6222.TWO, 6228.TWO, 
6229.TWO, 6233.TWO, 
6236.TWO, 6244.TWO, 
6246.TWO, 6247.TWO, 
6259.TWO, 6264.TWO, 
6404.TWO, 6417.TWO, 
6465.TWO, 6469.TWO, 
6510.TWO, 6538.TWO, 
8047.TWO, 8077.TWO, 
8080.TWO, 8083.TWO, 
8085.TWO, 8121.TWO, 
8171.TWO, 8415.TWO,       
8432.TWO, 8435.TWO 

 


