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1. Analytical Formula to Estimate the State Space (Simplex) Dimension

Although the derivation of this formula can be done using the methods of Generating
Functions (GF) -see e.g. [1]-, we consider that including it in this Supplementary Material
may be relevant when classifying points in the simplex.

Say we have k boxes of capacity C in which we want to introduce an arbitrary number
of balls (Figure S1). The problem is to compute the number of possible arrangements as a
function of these parameters. As stressed, this can be solved with the formalism of the GFs.

Starting with a single box (k = 1 in panel 1 of Figure S1) we represent the coefficients
of the sequence (an) = (a0, a1, . . . an, . . .) as the number of ways to enter a pack of n balls
into the box. If such box has unlimited capacity there is only one way to introduce the
n-pack: just put all balls inside!

(an) = (1, 1, 1, . . .) ∼ A(x) = 1 + x + x2 + x3 + . . . =
1

1− x
(S1)

where we have indicated the generating function A(x) = ∑∞
n=0 anxn associated to the

sequence (an). We have also used the geometric series when |x| < 1. However, if the box
has limited capacity C (panel 2) the possible ways to place the elements are:

(1, 1, 1, . . . , 1︸ ︷︷ ︸
C times

, 0, 0, . . .) (S2)

where there are C 1’s and the remaining quantities are 0. The associated generating function
renders: Ã(x) = 1 + x + x2 + . . . + xC.

Now, noting that:

1
1− x

= 1 + x + x2 + . . . + xC︸ ︷︷ ︸
Ã(x)

+xC+1(1 + x + x2 + . . .) (S3)

we obtain the generating function for a box with capacity C.

Ã(x) =
1− x1+C

1− x
. (S4)
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Figure S1. Estimating simplex dimension. An associated counting problem of ways to arrange n 
balls in k boxes of limited capacity C: 1) a single box with infinite capacity, 2) correction for a finite 
capacity box, 3) the case of two equal capacity boxes and 4) generalisation to an arbitrary number 
of boxes. Each panel shows the corresponding sequence and its associated generating function.

If now two C-sized boxes are considered (panel 3), the n-pack can be split into two 
sub-packs of size j and n − j, where 0 ≤ j ≤ n. The ways to deploy each pack into each box 
are simply those previously found for a single C-sized box. However, there are as many 
as n + 1 possible partitions of the n-pack now. The compound GF is the product of the 
corresponding GFs (see [1]). This is nothing else than the convolution rule for generating 
functions.
Back to the case of having k boxes, we iterate the process just described k times. The 
resulting GF is:

F(x) = [
1− x

1 − x1+C 
]k. (S5)

The number of possible arrangements formally consists of finding the nth coefficient in the
Taylor expansion of F(x) or, in GF notation [xn]F(x). Using the binomial theorem:

F(x) =
k

∑
j=0

(
k
j

)
(−1)jxj(1+C)[

1
1− x

]k. (S6)

Now, using the expansion for [1/(1− x)]k given by:

[
1

1− x
]k =

∞

∑
i=0

(
k + i− 1

i

)
xi (S7)

and substituting above we get

F(x) =
∞

∑
n=0

k

∑
j=0

(−1)j
(

k
j

)(
k + n− 1

n

)
xn+j(1+C) (S8)
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Doing now the shift n→ n + j(1 + C) we obtain:

F(x) =
∞

∑
n=0

xn[
k

∑
j=0

(−1)j
(

k
j

)(
k + n− 1− j(1 + C)

n− j(1 + C)

)
] (S9)

Notice that since n is a non-negative integer (n
k) 6= 0 ⇐⇒ 0 ≤ k ≤ n. This way, even if the

series coefficients are 6= 0 for n ≥ j(1 + C) one can define the sum starting at n = 0 since
the binomial coefficients will take care of the cut-off.

2. Algorithms

Algorithm S1 Workflow to compute the Mean Multi-Scale Entropy
INPUT: timestamped Origin-Destination time series D = {(A, B, t)}, ns, N,m, r, τmax 
OUTPUT: Mean MSE

1: Sort D by event timestamp t

2: J ← Buld the trip-trip (A, B) − (A′, B′) Jaccard distance Matrix using Eq.16 for all

possible combinations.

3: {uk : k = 1, . . . ns} ← Generate ns sequential samples of length N with random initial

point.

4: for k = 1, . . . ns do

5: MSE(uk; m, r, τmax)← Compute MSE for uk using Alg.2.

6: end for

7: return (1/ns)∑ns
k=1 MSE(uk; m, r, τmax)

Algorithm S2 Computation of MSE
INPUT: ordered series u = (u(1), u(2), . . . , u(N)), m, r, τmax
OUTPUT: MSE(u; m, r, τmax)

1: for τ = 1, . . . τmax do

2: for j = 1, . . . , bN/τc do

3: y(τ) = (y(τ)j ) Coarse-grain u using Eq.15

4: end for

5: SampEn(u; m, r)τ Compute SampEn(y(τ); m, r) using Alg.3

6: end for

7: return {SampEn(u; m, r)τ : τ = 1, . . . , τmax}
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Algorithm S3 Computation of SampEn
INPUT: ordered series y = (yi : i = 1, . . . , L) ,m, r 
OUTPUT: SampEn(y; m, r)

1: for j = 1 . . . L−m + 1 do

2: v(j) [yj+k : 0 ≤ k ≤ m− 1] {m sized templates}

3: end for

4: for j = 1 . . . L−m do

5: v∗(j) [yj+k : 0 ≤ k ≤ m] {m + 1 sized templates}

6: end for

7: Bk |{v(j) : d(v(k), v(j)) ≤ r}|, (1 ≤ k ≤ L−m + 1) using Eq.16 for d(v(k), v(j))

8: Ak |{v∗(j) : d(v∗(k), v∗(j)) ≤ r}|, (1 ≤ k ≤ L−m) using Eq.16 for d(v∗(k), v∗(j))

9: return − log

(
∑L−m

k=1 Ak

/
∑L−m

k=1 Bk

)

Algorithm S4 Expected Absorption Time for a system’s 
state
INPUT: non-collapsed state s = (s1, s2, . . . , sne), pij 
OUTPUT: T(s)1: for i = 1, . . . , ne do

2: M(i)← Transition matrix from pij using Eq.17

3: F(i) (I −M(i))−1 {Fundamental Matrix}

4: T(si)← ∑C−1
b=1 Fsib {lifespan for station i with occupancy si}

5: end for

6: return T(s)← min{T(si) : i = 1, . . . , ne}

Algorithm S5 Estimating system’s collapse
INPUT: Origin-Destination data D = {(A, B, t)}, non-collapsed partial simplex Ω 
OUTPUT: [H, T(H)] (energy, absorption time list)

1: pij ← Compute (i, j) trips empirical prob. from D

2: for s ∈ Ω do

3: u(s)← State energy

4: T(s)← Absorption Time computed with Alg.4 using s and pij

5: end for

6: [H, T(H)]← with T(H) = 1
|{s:H(s)=H}| ∑s:H(s)=H T(s){Aggregate by state-energy}

7: return [H, T(H)]
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Algorithm S6 Computation of a non-collapsed partial simplex 
INPUT: Num. units N, Num. stations D, Station’s capacity C, Nsteps 
OUTPUT: non-collapsed partial simplex Ω

1: s← valid sate in Ω = {s ∈ ND | ∑D
i=1 si = N, 0 ≤ si ≤ C}

2: Ω = {s}, k← 0

3: while k ≤ Nsteps do

4: s′ s

5: choose i, j randomly from s such that si > 0 and sj < C,

6: s′i s′i − 1 in s′ {station i decreases by one vehicle}

7: s′j s′j + 1 in s′ {station j increases by one vehicle}

8: Ω = Ω ∪ {s′}

9: s s′

10: k k + 1

11: end while

12: return Ω
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