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Network optimization 

As alluded in the manuscript, we used the keras tuner library to optimize the architecture 

of the neural network1. We optimized the architecture in two stages. First, using all the available 

variables as input to the network, we optimized the architecture. Next, based on the feature 

importance scores we excluded the features that contribute less than 1% to the classification 

performance. We considered a subset of features and optimized the network again. We repeated 

the optimization for 10 times using k-fold cross validation sets.  

 

 

Model performance 

Mortality 

After optimizing the network using the keras tuner, using all available features as input 

(FS1), we obtained one hidden layer architectures with 40 nodes, followed by sigmoid activation 

with a learning rate of 0.1. Using this network, we obtained an AUC of 0.955 (95% CI: 0.947-0.963) 

for mortality prediction. The top three features of importance (in the decreasing order) are shock, 

EF and admission type. Using FS2, we again optimized the network architecture and obtained a 



model with one hidden layer consisting of 150 nodes with sigmoid activation and a learning rate 

of 0.01. Using the optimized network, we achieved an AUC of 0.967 (95% CI: 0.963-0.972). 

Though, the top three features (EF, Shock and admission type) remained the same, EF now has 

higher importance over shock. Next, we sequentially excluded the top performing feature to 

understand which features contribute to the mortality prediction. The performance of the 

classifier by sequentially excluding the top performing features (FS3-FS7) are shown in Table -1. 

The feature importance values for all the configurations are shown in the Online Supplement 

Figures 1A- 1G. After excluding EF from FS2 to form FS3 as input, we achieved an AUC of 0.952 

(95% CI: 0.946-0.958) and the mean importance of shock has almost doubled. Next, we excluded 

shock from FS3 to obtain FS4 as input and achieved an AUC of 0.938 (95% CI: 0.929-0.947). 

Interestingly, cardiogenic shock has highest importance now (previously ranked at 21 out of 24 

features). Indeed cardiogenic shock and shock are clinically known to correlate well with the 

mortality. After excluding cardiogenic shock to form FS5 as input, we achieved an AUC of 0.922 

(95% CI: 0.912-0.933), now prior CAD, urea, admission type, prior CMP and ACS assumes 

significance in predicting mortality with similar importance scores. Excluding prior CAD to form 

FS6, we achieved an AUC of 0.911 (95% CI: 0.901-0.922) with the highest importance assigned to 

urea. Excluding urea from FS6 resulted in FS7 with an AUC of 0.907 (95% CI: 0.899-0.915), now 

prior CMP has highest importance followed by creatinine (previously ranked at 7 out of 21 

features), indicating the importance of urea and creatinine in their contribution towards 

mortality prediction.  

In summary, EF and shock are the most significant features for predicting mortality 

objectively, which correlated well with established clinical knowledge2,3. With recursive feature 

elimination, we identified that cardiogenic shock, prior CAD, urea, prior CMP and creatinine 

values are the remaining features with most significance in predicting mortality.  

 

Heart failure 

After optimizing the network using keras tuner, using all available features as input (FS1), 

the optimal network configuration consists of one hidden layer of dimension 170, with sigmoid 

activation and learning rate of 0.01. Using such network, we obtained an AUC of 0.833 (95% CI: 



0.819-0.846). BNP and EF features clearly standout in predicting HF incidence. Using FS2 as input, 

we again optimized the network architecture and obtained a model with one hidden layer 

consisting of 140 nodes, sigmoid activation and a learning rate of 0.01. Using the optimized 

network, we achieved an AUC of 0.838 (95% CI: 0.825-0.852). With the subset of features, not 

surprisingly BNP and EF are again the significant features in predicting HF. Next, we sequentially 

excluded the top performing feature to understand which features assume importance in 

classification. The feature importance values for all the input configurations are shown in the 

Online Supplement Figures 2A-2G. After excluding BNP from FS2 to form FS3 as input, we 

achieved an AUC of 0.795 (95% CI: 0.783-0.807) with the median importance of EF increased 

significantly from 0.16 to 0.67, and the next important feature after EF is urea. However, after 

excluding EF from FS3 to form FS4 as input, we obtained an AUC of 0.767 (95% CI: 0.755-0.779) 

with the highest importance assigned to prior CMP (previously ranked at 8 out of 10 features), 

followed by urea. Excluding prior CMP from FS4 to form FS5, urea now has the highest 

importance, with an AUC of 0.725 (95% CI: 0.715-0.734). In absence of urea, i.e., using FS6, 

creatinine has the highest significance in predicting HF with an AUC of 70.67%. Finally, we 

excluded creatinine and found that admission type has highest score in predicting HF with an 

AUC of 0.670 (95% CI: 0.657-0.684).  

In summary, BNP and EF are key features of this model and established markers of HF  4. 

However, in their absence, prior CMP, urea and creatinine are the remaining most significant 

features, in HF classification. 

  

ST-segment elevation myocardial infarction 

After optimizing the network using the keras tuner, using all available features as input 

(FS1), the optimal network configuration consists of one hidden layer of dimension 50, with 

sigmoid activation and learning rate of 0.01. Using such network, we obtained an AUC of 0.832 

(95% CI: 0.824-0.839). EF has significant importance followed by prior CAD and admission type. 

Using FS2 as input, we again optimized the network architecture and obtained a model having 

two hidden layers, each with dimension of 20 nodes each with a relu activation and a learning 

rate of 0.01. Using the optimized network, we achieved an AUC of 0.832 (95% CI: 0.821-0.842, 



with the top three features remaining the same. Next, we sequentially excluded the top 

performing feature to understand which features assume importance in classification. The 

feature importance values for all the input configurations are shown in the Online Supplement 

Figures 3A-3G. Excluding EF to form FS3 as input, we achieved an AUC of 0.790 (95% CI: 0.778-

0.801) with prior CAD being the most important feature. Excluding prior CAD from FS3 to form 

FS4 as input, STEMI can be predicted with 0.731 (95% CI: 0.714-0.748) AUC with admission type 

having the highest significance followed by TLC and age. Next, subsequent elimination of top 

performing features resulted in FS5, FS6 and FS7, with high importance for TLC, glucose and age; 

and the corresponding AUCs are 0.678 (95% CI: 0.666-0.691), 0.647 (95% CI: 0.632-0.662) and 

0.624 (95% CI: 0.615-0.633) respectively.  

In summary, EF is the most significant feature of this model associated with STEMI 5. In 

the absence of EF measurement, prior CAD, admission type, TLC, glucose and age are the 

remaining most significant features, in STEMI classification. 

 

Pulmonary Embolism 

After optimizing the network using the keras tuner, using all available features as input 

(FS1), the optimal network configuration consists of one hidden layer of dimension 80, with 

sigmoid activation and learning rate of 0.1. Using such network, we obtained an AUC of 0.779 

(95% CI: 0.733-0.826). EF is the most significant feature, followed by prior CAD and TLC. Using 

FS2 as input, we again optimized the network architecture and obtained a model having two 

hidden layers with dimension of 50 nodes and 80 nodes respectively for layer 1 and layer 2, with 

sigmoid activation for both layers and a learning rate of 0.01. Using the optimized network, we 

achieved an AUC of 0.802 (95% CI: 0.764-0.84). With the top three features being EF, prior CAD 

and admission type. Next, we sequentially excluded the top performing feature to understand 

which features assume importance in classification. The feature importance values for all the 

input configurations are shown in the Online Supplement Figures 4A-4G. Excluding EF from FS2 

to form FS3 as input, we achieved an AUC of 0.737 (95% CI: 0.688-0.786) with the median 

importance of prior CAD increased from 0.22 to 0.58. Excluding prior CAD from FS3 to form FS4 

as input, we achieved an AUC of 0.630 (0.580-0.680) with admission type exhibiting the highest 



significance followed closely by locality and HTN. Next, subsequent sequential elimination of top 

performing features resulted in FS5, FS6 and FS7 as inputs with  high importance for locality, DM 

and HTN; and the corresponding AUCs are 0.621 (0.585-0.658), 0.597 (0.557-0.636) and 0.589 

(0.543-0.636) respectively.  

In summary, EF is the most significant feature of this model in predicting pulmonary 

embolism ,6 being in agreement with clinical observations suggesting that the relative risk of 

pulmonary embolism is at least double to that of patients without heart failure, and increases as 

LV systolic function declines.7 In the absence of EF measurement, prior CAD, admission type, 

locality, DM and HTN are the remaining most significant features, in pulmonary embolism 

classification. 

  

 

Duration of hospital stay 

After optimizing the network using the keras tuner, using all the available features as 

input (FS1), the optimal network configuration consists of one hidden layer of dimension 10, with 

relu activation and learning rate of 0.01. Using such network, we obtained the mean absolute 

error (MAE) in predicting the duration of stay as 2. 561 (95% CI: 2.526-2.596) days. The top three 

features of importance in predicting the duration of stay are stable angina, admission type and 

TLC. Using FS2 as input, we again optimized the network architecture and obtained a model with 

one hidden layer consisting of 10 nodes with relu activation and a learning rate of 0.01. Using the 

optimized network, we achieved an MAE of 2.543 (95% CI 2.499-2.586), with the top three 

features being admission type, TLC and EF. The feature importance values for all the input 

configurations are shown in the Online Supplement Figures 5A-5G. Intuitively, admission to an 

emergency department may lead to longer duration of stay and has higher importance. After 

excluding the admission type from FS2 to form FS3, we achieved a MAE of 2.572 (2.528-2.616) 

with TLC being the most importance features followed by stable angina. Excluding TLC from FS3 

to form FS4 as input resulted in stable angina being the important feature for estimation of the 

duration of stay with MAE of 2.623 (2.579-2.667). Excluding stable angina from FS4 to form FS5, 

EF followed by STEMI assumes significance with MAE of 2.642 (2.598-2.685). Excluding EF 



resulted in STEMI followed by BNP (previously ranked at 5 out of 26 features) as important factors 

for DOS estimation with MAE of 2.651 (2.608-2.695). Excluding STEMI, BNP has the highest 

importance in estimating DOS with MAE of 2.694 (2.650-2.737). Indeed, EF and BNP are highly 

correlated with heart failure and subjects with HF are bound to have a longer duration of stay.  

In summary, admission type is the most significant feature in predicting the duration of 

hospital stay. With recursive feature elimination, TLC, stable angina, EF, STEMI and BNP are the 

remaining most significant features, in predicting the duration of stay. 
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Online Supplement Figure Captions 

 

  



  

Feature importance of mortality classifier using feature set-1 (FS1) as input 

Figure S1A 



   

Figure S1B 

Feature importance of mortality classifier using feature set-2 (FS2) as input 



   

  

Figure S1C 

Feature importance of mortality classifier using feature set-3 (FS3) as input 



   

 

Figure S1D 

Feature importance of mortality classifier using feature set-4 (FS4) as input 



   

 

Figure S1E 

Feature importance of mortality classifier using feature set-5 (FS5) as input 



   

Figure S1F 

Feature importance of mortality classifier using feature set-6 (FS6) as input 



   

Figure S1G 

Feature importance of mortality classifier using feature set-7 (FS7) as input 



Online Supplement Figure S1. Feature importance scores for predicting mortality using (A) FS1; 

(B) FS2; (C) FS3; (D) FS4; (E) FS5; (F) FS6; (G) FS7. Abbreviations: Admission type (E/O): 

emergency/outpatient; Locality (R/U): rural/urban; DM: diabetes mellitus, HTN: hypertension, 

CAD: coronary artery disease, CMP: cardiomyopathy, CKD: chronic kidney disease; HB: 

hemoglobin, TLC: total lymphocyte count, BNP: brain natriuretic peptide, RCE: raised cardiac 

enzymes and EF: ejection fraction. 

 



   

Figure S2A 

Feature importance of heart failure classifier using feature set-1 (FS1) as input 



   

 

Figure S2B 

Feature importance of heart failure classifier using feature set-2 (FS2) as input 



   

Figure S2C 

Feature importance of heart failure classifier using feature set-3 (FS3) as input 



 

   

Figure S2D 

Feature importance of heart failure classifier using feature set-4 (FS4) as input 



 

   

Figure S2E 

Feature importance of heart failure classifier using feature set-5 (FS5) as input 



 

   

Figure S2F 

Feature importance of heart failure classifier using feature set-6 (FS6) as input 



 

   

Figure S2G 

Feature importance of heart failure classifier using feature set-7 (FS7) as input 



Online Supplement Figure S2. Feature importance scores for predicting heart failure using (A) 

FS1; (B) FS2; (C) FS3; (D) FS4; (E) FS5; (F) FS6; (G) FS7. 

 

 



   

 

Figure S3A 

Feature importance of STEMI classifier using feature set-1 (FS1) as input 



   

Figure S3B 

Feature importance of STEMI classifier using feature set-2 (FS2) as input 



   

Figure S3C 

Feature importance of STEMI classifier using feature set-3 (FS3) as input 



 

   

Figure S3D 

Feature importance of STEMI classifier using feature set-4 (FS4) as input 



 

Figure S3E 

Feature importance of STEMI classifier using feature set-5 (FS5) as input 



   

Figure S3F 

Feature importance of STEMI classifier using feature set-6 (FS6) as input 



 

   

Figure S3G 

Feature importance of STEMI classifier using feature set-7 (FS7) as input 



Online Supplement Figure S3. Feature importance scores for predicting of ST-segment elevation 

myocardial infarction using (A) FS1; (B) FS2; (C) FS3; (D) FS4; (E) FS5; (F) FS6; (G) FS7. 

 



   

Figure S4A 

Feature importance of pulmonary embolism classifier using feature set-1 (FS1) 
as input 

 



   

Figure S4B 

Feature importance of pulmonary embolism classifier using feature set-2 (FS2) 
as input 

 



   

Figure S4C 

Feature importance of pulmonary embolism classifier using feature set-3 (FS3) 
as input 

 



   

Figure S4D 

Feature importance of pulmonary embolism classifier using feature set-4 (FS4) 
as input 

 



   

Figure S4E 

Feature importance of pulmonary embolism classifier using feature set-5 (FS5) 
as input 

 



   

Figure S4F 

Feature importance of pulmonary embolism classifier using feature set-6 (FS6) 
as input 

 



   

 

Figure S4G 

Feature importance of pulmonary embolism classifier using feature set-7 (FS7) 
as input 

 



Online Supplement Figure S4. Feature importance scores for predicting of pulmonary embolism 

using (A) FS1; (B) FS2; (C) FS3; (D) FS4; (E) FS5; (F) FS6; (G) FS7.  

 

 



   

 

Figure S5A 

Feature importance of duration of stay estimator using feature set-1 (FS1) as 
input 



   

Figure S5B 

Feature importance of duration of stay estimator using feature set-2 (FS2) as 
input 



 

   

Figure S5C 

Feature importance of duration of stay estimator using feature set-3 (FS3) as 
input 



 

   

Figure S5D 

Feature importance of duration of stay estimator using feature set-4 (FS4) as 
input 



 

   

Figure S5E 

Feature importance of duration of stay estimator using feature set-5 (FS5) as 
input 



 

   

Figure S5F 

Feature importance of duration of stay estimator using feature set-6 (FS6) as 
input 
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Figure S5G 

Feature importance of duration of stay estimator using feature set-7 (FS7) as 
input 



 

Online Supplement Figure S5. Feature importance scores for estimating duration of stay using 

(A) FS1; (B) FS2; (C) FS3; (D) FS4; (E) FS5; (F) FS6; (G) FS7. 

 

Online Supplement Figure S6. Comparison of receiver operation characteristic (ROC) curves of 

mortality classifier using feature sets FS1-FS7 as inputs. The classifier model using FS2 as input 

has superior performance over the model using FS1 as input, and the performance gradually 

decreases with input being varied from FS3 to FS7. 

 



Online Supplement Figure S7. Comparison of ROC curves of heart failure classifier using feature 

sets FS1-FS7 as inputs. The classifier model using FS2 as input has slightly better performance 

over the model using FS1 as input, and the performance gradually decreases with input being 

varied from FS3 to FS7. 

 

Online Supplement Figure S8. Comparison of ROC curves of ST-segment elevation myocardial 



infarction (STEMI) classifier using feature sets FS1-FS7 as inputs. The classifier model using FS2 as 

input is comparable to the model using FS1 as input, and the performance gradually decreases 

with input being varied from FS3 to FS7. 

 

Online Supplement Figure S9. Comparison of ROC curves of pulmonary embolism classifier using 

feature sets FS1-FS7 as inputs. The classifier model using FS2 as input has superior performance 

over the model using FS1 as input, and the performance gradually decreases with input being 

varied from FS3 to FS7. 

 

 


