
 1

Supplementary materials 
 
Online supplemental methods (OSM) 
 

OSM1. The experiment. The Orbicella faveolata elevated temperature study was 
described previously [1-2]. In brief, 20 colonies each from “Little Conch” (24.9465N, 
80.50205W; offshore), “The Rocks” (24.95375N, -80.54806W; inshore), and “Cheeca Rocks” 
(24.89742N, 80.61573W; inshore) were tagged and genotyped in July 2017 (Table 1; discussed 
in Manzello et al. [3]). A subset of 5-6 were cored into 10-20 fragments with a Nemo V2 electric 
waterproof drill (USA) drill featuring a 4.5-cm drill bit. Half of the 360 4.5-cm diameter 
fragments were used in an inshore-offshore reciprocal transplant [4], while the remaining 180 
were allowed to recover in the field for two days prior to transport in Yeti coolers (USA) filled 
with seawater to the University of Miami’s Rosenstiel School of Marine and Atmospheric 
Sciences (RSMAS). Once at RSMAS’ “Experimental Reef Laboratory,” the cores were 
distributed randomly across four seawater tables, where they were allowed to recover for seven 
days (July 20-27, 2017). Fragments were randomly assigned to either 1) short-term (5-day) 
control temperature (30ºC), 2) long-term (31-day) control temperature (30ºC), 3) short-term (5-
day) very high temperature (33ºC), or 4) long-term (31-day) high-temperature (32ºC) exposure 
(n=3 tanks/treatment x time) such that a spectrum of bleaching responses would hypothetically be 
elicited: healthy controls, high-temperature-acclimating samples, sub-lethally stressed samples, or 
actively bleaching fragments. These fragment health designations were properties of the 
individual pucks/fragments (see main text for definitions.); a second parameter, “colony health 
designation,” was instead a property of the original colony from which fragments were made and 
could be “bleaching-resistant” (failure to pale at either high-temperature treatment) or 
“bleaching-susceptible” (paling at either of the two high-temperature treatments). The control 
temperature of 30ºC represented the ambient in July 2017 (see 
https://www.pmel.noaa.gov/co2/pco2data/cheeca/alldata/coral_cheeca-all_xco2_pres-
xco2seadryair-xco2airdryair-ph-sss-sst-chl-ntu-sc_o2-sc_o2_mgl-sc_o2_umolkg-sigmatheta.dat 
for real-time temperature data for Cheeca Rocks.). 
 

OSM2. Temperature data. As the mean monthly maximum at the field sites is 
approximately 31ºC (August), NOAA’s Coral Reef Watch’s algorithms would predict that corals 
of these reefs would bleach after 4-8 weeks of exposure to 31ºC+1ºC=32ºC (i.e., 4-8 degree-
heating weeks). However, Gintert et al. [5] found that, by assuming thermal stress to only 
accumulate at temperatures >32ºC, bleaching likelihood and severity is underestimated since 
temperatures are rising by the year; instead, the temperature above which corals begin to become 
thermally stressed in situ is closer to 31.3ºC [5]. The Coral Reef Watch models, then, do not 
accurately predict timing of onset of bleaching, nor bleaching severity, at any of the three field 
sites. The “very high” (33ºC; “V” in the multivariate plots), high (32ºC; “H”), and control (30ºC; 
“C”) treatments in the laboratory experiment consequently correspond to degree-heating weeks of 
1.2 (1.7ºC x 0.7 weeks), 3.1 (0.7ºC x 4.4 weeks), and 0, respectively; degree-heating days of 8.5, 
21.7, and 0, respectively; and degree-heating hours of 204, 521, and 0, respectively. As a 
comparison, the colonies from which fragments were made were exposed to 2.4 degree-heating 
weeks, 16.8 degree-heating days, and 396 degree-heating hours in situ over the period in which 
the experiment was conducted (August 2017). Please note that the latter does not simply equate 
to number of degree-heating days x 24 since temperature was logged every three hours in situ; on 
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many days, the temperature only rose above 31.3ºC ephemerally. In these cases, a full degree-
heating day would be logged, while the number of degree-heating hours might be as low as three. 
Bleaching occurred in the laboratory and in situ at around 400 degree-heating hours in 2017. 
Similarly, the field test colonies monitored in 2019 bleached between 2 and 5 degree-heating 
weeks [6].  
 

OSM3. Protein extraction-details. Details of the protein extraction can be found in the 
main text. It is worth mentioning that the liquid nitrogen+TRIzol dual-homogenization method 
was critical for ensuring that the durable walls of the Symbiodiniaceae cells in hospite were 
effectively ruptured. The use of gentler extraction procedures are adequate for isolating 
anthozoan host proteins but not those of their dinoflagellate endosymbionts (i.e., resulting in an 
inaccurate, overly high host:endosymbiont protein ratio). As discussed in the main text, the 
host:endosymbiont protein ratio using this method (~1.2:1 to 1.5:1) was actually lower than the 
biomass ratio (~2:1), signifying that Symbiodiniaceae proteins were effectively extracted 
(potentially even at the expense of host coral proteins).  
 

OSM4. Fasta database details. The queried fasta files were derived from an RNA-Seq 
analysis of over 70 O. faveolata transcriptomes, including those 21 experimental samples (Table 
1) from which proteins were extracted. In other words, both RNAs and proteins were extracted 
from the same sample, with the RNA analyzed by RNA-Seq [1] and the proteins analyzed herein 
(an additional 50 samples from the same experiment of Aguilar et al. [1] were analyzed by RNA-
Seq & not by proteomics.). From these same 70 samples, a Symbiodiniaceae dinoflagellate fasta 
mRNA sequence database was also assembled, and this was used for the querying of the same 
RAW files from the mass spectrometer. Each of the RAW files was queried twice, once against 
the host transcriptome and once against the endosymbiont one. It is worth noting that, although 
genomic sequences (& even genomes in the case of the dinoflagellates) are available for these 
species, I opted to instead query sequences derived directly from the study organisms given that 
genomic sequences were obtained from different host coral genotypes. Because the 6-7 coral 
samples in each iTRAQ batch represented a mix of host genotypes, I did not query host 
transcriptomes in a genotype-by-genotype fashion (e.g., querying all proteins against the skyblue 
genotype, then querying all against the lightyellow genotype). If, on the other hand, all corals had 
been of the exact same genotype, I would have queried the contig sequence set for that genotype 
alone. Having queried mass spectrometry-derived spectral data from a mix of genotypes against a 
composite transcriptome database likely signifies that the software only considered peptides 
whose peptide sequences were identical across the 7-8 samples in each batch (so as not to 
consider sequence bias in labeling efficiency, for instance). This issue, which would also affect 
the endosymbiont analysis (since, like the host corals, a mix of lineages were present across 
samples [2].), could explain why the total number of proteins sequenced was lower than expected 
(see Results & Discussion for details.). 

It should be mentioned that, unlike for transcriptomic and genetic analyses, in which 
contigs/reads can be confidently mapped to individual Symbiodiniaceae lineages/genera, tryptic 
peptides are typically too short (6-10 amino acids) to do so with confidence [7]. Indeed, in many 
cases sequenced peptides could not be confidently ascribed even to host or endosymbiont. For 
these reasons, and because O. faveolata hosts a large diversity of dinoflagellates in the Florida 
Keys [3], I did not attempt to resolve sequences into exact Symbiodiniaceae lineages. In 
preliminary analyses, both host and dinoflagellate endosymbiont fasta libraries were actually 
queried simultaneously with the same RAW file, though it was found that only a small number of 
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proteins (dozens) passed the false discovery rate threshold discussed above; this is because, 
unlike BLAST, mass spectrometry algorithms do not use exact protein sequences per se, but 
instead peaks that are used to infer amino acid molecular weights. For highly conserved 
genes/proteins, the software is unlikely to assign large numbers of peptides to the correct 
compartment of origin with statistical confidence (p<0.01 based on peptide score q-values 
[corrected against decoy databases]). When each compartment’s transcriptome/genome is queried 
in isolation, however, a greater proportion of proteins (typically hundreds) can be confidently 
assigned. However, because I was concerned with assigning sequenced peptides to the incorrect 
compartment of origin, I enacted the aforementioned rule that two peptides (each >6 amino acids) 
mapped to the same protein. It is possible that increasing the mapping stringency even further 
(e.g., 3-4 peptides/reference protein) could ultimately lead to an elucidation of the exact 
Symbiodiniaceae species from which the protein emerged, though this would result in a far 
reduced number of proteins (<10). 

 
OSM5. Statistical analysis-details. Because entire coral fragments were sacrificed at each 

sampling time, a repeated-measures design was not employed. Instead, fragment was nested 
within genotype x temperature x time to ensure that intra-genotypic variability was 
accommodated in all statistical models outlined below and in the main text (both explanatory & 
predictive). In the cases when the fragment[genotype x temperature x time] term was not 
statistically significant, I assumed that a fragment from one genotype sacrificed after five days of 
laboratory treatment exposure was equivalent to an unsacrificed clonemate in the same treatment, 
an important assumption to be made with respect to the predictive modeling approaches outlined 
below and in the main text (which adhered to an “identical twin” design). This topic is discussed 
in detail in the main text.  
 

OSM6. Explanatory statistics-univariate. Of the >37,000 peptides sequenced across the 
three normalizer and 20 experimental coral samples (1 of the 21 samples failed.), the vast 
majority (>99%) were filtered out (discussed in the Results & Discussion). The remaining 46 
and 40 host coral and dinoflagellate proteins, respectively, that passed all quality control criteria 
were log2-transformed and used in a variety of both univariate and multivariate explanatory 
statistical analyses (all with the exception of permutational multivariate ANOVA 
[PERMANOVA] & PERMDISP [Primer, UK] were carried out with JMP® Pro 16, USA.). First, 
JMP’s response screening platform was used to search for proteins whose concentrations were 
affected by temperature (30, 32, or 33ºC [df=2], as well as simply control vs. high [32+33ºC]), 
time (5 vs. 31 days), genotype (n=6; see Table 1.), shelf (inshore vs. offshore), site (The Rocks, 
Cheeca Rocks, & Little Conch), colony health designation, and fragment health designation at 
time of sampling. Briefly, response screening computes a false discovery rate-adjusted p-value to 
limit the possibility of generating type I statistical errors when performing numerous comparisons 
(>600 in this case). Proteins whose FDRlogworth values were >2 (equivalent to a false discovery 
rate-adjusted p-value of 0.01) were considered to represent differentially concentrated proteins. I 
considered a second group of “proteins of interest,” which I defined as those that were included 
in any of the stepwise discriminant analysis models discussed below. In most cases, the 
differentially concentrated proteins were those most likely to feature in the stepwise discriminant 
analysis models; for instance, if a protein was differentially affected by temperature, it was 
almost certainly in the stepwise discriminant analysis model for temperature (& vice versa). In 
contrast, the more complex models for fragment health designation and colony health designation 
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outlined below did not necessarily feature the most differentially concentrated proteins, a paradox 
familiar to many data modelers. 

 
OSM7. Explanatory statistics-multivariate. When dealing with large numbers of 

molecules, such as ‘Omics datasets (in which the number of cellular targets is always greater than 
the number of samples), many inferential multivariate approaches cannot be used, namely 
multivariate ANOVA. However, exploratory-based multivariate approaches, such as principal 
components analysis and multi-dimensional scaling, can depict multivariate differences among 
samples in a semi-quantitative manner. Therefore, a principal components analysis on 
correlations (log2-transformed data) was performed for the 46 host coral proteins alone, the 40 
endosymbiont proteins alone, and all 86 holobiont proteins (both compartments). Since iTRAQ 
data are presented as ratios (to the normalizer sample found in each batch), and all were log2-
transformed prior to statistical analyses, principal components analysis and multi-dimensional 
scaling depict very similar information, with the latter more directly representing similarity. 
However, since principal component analysis biplots were not built with standardized data (i.e., 
normalized to account for the fact that some proteins were maintained at higher levels than 
others), protein concentrations were standardized prior to multi-dimensional scaling to reduce the 
influence of highly concentrated proteins. As such, the principal components analysis and multi-
dimensional scaling biplots, while similar, depict slightly different information (Figure 1) since 
highly concentrated proteins were not down-weighted in the former.  

Both principal components analysis and multi-dimensional scaling plots were created for 
the day-5 experiment only (30 vs. 33ºC), the 31-day experiment only (30 vs. 32ºC), and as pooled 
across experiments for all 86 proteins, as well as the 27 differentially concentrated proteins 
(including the 18 proteins of interest). Unlike multivariate ANOVA, similarity-based 
PERMANOVA can be used to uncover multivariate mean differences when the number of 
proteins (n=86) is larger than the number of samples (n=20), and it was used to test the effects of 
the same experimental factors as above with a Bray-Curtis similarity matrix calculated from 
standardized values of the 86 proteins as the model Y. An alpha level of 0.05 was set for this 
analysis. As a similar approach to PERMANOVA, a Euclidean distance-based similarity matrix 
was constructed from the 20 samples for the host, endosymbiont, and holobiont proteins, and the 
coordinates (see Table 4.) were instead used as the models’ Y’s. Since the number of dimensions 
(6-7, depending on suite of proteins included) was less than the number of samples, MANOVA 
of the effects of the various experimental parameters could then be undertaken; this approach is 
known as non-parametric MANOVA (NP-MANOVA). These results are not shown directly in 
Table 4 and served namely to corroborate the findings of the more robust PERMANOVA and 
complement those of the partial least squares-based correlation loading plots (Figures 3a & S5).  

Hierarchical clustering was used with both the 46- and 40- host coral and endosymbiont 
protein datasets, respectively, and a modified WGCNA-like analysis was performed by 
calculating eigenproteins from the protein contribution scores for each cluster and regressing the 
cluster means against the experimental parameters discussed above; only relationships with 
R2>0.4 (typically p<0.01) were considered, and I hypothesized that the hierarchical clustering 
and stepwise discriminant analysis approaches discussed below would yield similar groupings of 
proteins that could be used to develop models with the predictive power to significantly partition 
corals by experimental parameter of interest. For this reason, these results are predominantly 
discussed only in the online supplemental results (OSR). 
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OSM8. Proteomic predictive modeling-overview. There were two proteomic predictive 
modeling goals. In the first, I sought to simply build a model capable of distinguishing corals of 
the 3-4 fragment health designations by using random mixes of training and validation (i.e., 
“holdback”) samples across the 20 experimental samples. Although these models are of little use 
in conservation since an actively bleaching sample can be observed by eye by SCUBA divers 
(i.e., no need to validate with invasive sampling approaches featuring expensive ‘Omics 
technologies), it was important to ensure that there was sufficient proteomic variation among 
healthy controls, high-temperature-acclimating samples, sub-lethally stressed samples, and 
actively bleaching corals to develop more sophisticated predictive models that could be later used 
with samples collected in situ for which no prior knowledge on bleaching susceptibility exists. 
This would be achieved instead by developing a predictive model for the colony health 
designation (see definitions above & in the main text.).  

The models were constructed with colony or fragment health designation as the Y and the 
proteins as the predictors, and at least one sample from each of the three colony or fragment 
health designation levels, respectively, was held back to serve as a validation sample. It is 
important to note that, in the colony health designation analysis, a fragment from a bleaching-
susceptible coral could actually be a healthy control, high-temperature-acclimating, sub-lethally 
stressed, or actively bleaching fragment; in other words, this model sought to uncover entrained 
proteomic differences of the colony in the presence of experimental effects. Are there proteomic 
signatures that manifest in fragments from bleaching-resistant colonies, for instance, regardless of 
which temperature they are exposed to, or, instead, are the proteomic responses more reflective of 
the temperature treatment itself? Prior work has shown that, although certain proteins are 
undoubtedly involved in the coral stress response, most canonical eukaryotic stress response 
proteins are maintained at high levels at all times in corals given their residence in substantially 
marginalized environments across the globe [2]. This means that a bleaching-resistant or 
bleaching-susceptible-indicative proteomic signature could be unveiled even in samples exposed 
to an array of experimental conditions (& with varying phenotypes). Models whose fragment and 
colony health designation misclassification rates for the validation samples were 0% (i.e., 100% 
accuracy) are discussed in the main text and are of likely utility to managers looking to screen for 
resilient colonies at their study reefs.   
 

OSM9. Predictive modeling details. As discussed in the main text, JMP® Pro 16’s 
“model screening” platform was run with the 86 proteins as predictors (X) and the two coral 
health parameters as Y: fragment health designation (the actual status of the analyzed 
biopsy/fragment; healthy control, high-temperature-acclimating [pooled with healthy controls for 
analyses listed as “FHD(3)”], sub-lethally stressed, or actively bleaching) and colony health 
designation (the ultimate resilience of the colony as a whole [assessed over time]; bleaching-
resistant vs. bleaching-susceptible). In the initial analysis, the following modeling types were 
tested with 15 training and 5 validation samples (ensuring that at least one of each of the three 
fragment and colony health designations was represented in the validation set): bootstrap forest, 
discriminant analysis, generalized multivariate regression (gen-reg; using a variety of different 
algorithms; see Table S1.), k-nearest neighbors, naïve Bayes, neural networks, partial least 
squares, stepwise discriminant analysis (run manually as described below), stepwise regression, 
and support vector machines. It should be noted that, because there were more analytes (86) than 
samples (20), the more commonly employed ordinary least squares could not be run. The Python 
code for all models has been made publicly available as part of this article’s online 
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supplemental data file. In certain instances, “test” data were used to further decrease chances of 
over-fitting.  

For each model, the following fit parameters were calculated: root mean square error, 
Akaike’s information criterion (adjusted to the total number of model parameters, i.e., AICc), 
training R2 (how well the model fit the training data), validation R2 (how well the model fit the 
validation or test data), and model percent misclassified (i.e., the misclassification rate; how often 
the prediction was wrong, i.e., the inverse of accuracy). Among these parameters, I prioritized the 
latter; all else being equal, then, I sought the model that had the highest chance of correctly 
determining the bleaching status (fragment health designation) or susceptibility (colony health 
designation) of a coral. When two models were characterized by the same misclassification rates, 
the difference between the training and validation root mean square errors was the second 
criterion for model ranking; all else being equal, the model whose validation root mean square 
error was only slightly higher than that of the respective training error was prioritized.  
 
 OSM10. Neural networks. Because the artificial intelligence-(AI) based neural networks 
were the only modeling type capable of predicting coral bleaching susceptibility at high accuracy 
for the fragment and colony health designations (see Results for details.), ~20,000 neural 
network models were built in which the following input parameters were optimized (Table S2): 
number of hidden layers (1 vs. 2; i.e., no “deep” learning), numbers of each of three activation 
types (TanH [sigmoidal], linear [identity], &/or Gaussian [radial]; each ranging from 0 to 4), 
number of “boosts” (0, 1, 2, or 20), learning rate when using boosted models (0, 0.1, 0.2, or 0.5), 
number of tours (1, 10, 20, 50, or 100), type of penalty (absolute, squared, or weight decay), and 
covariate transformation (transformed vs. untransformed). That said, there was a preference for 
the weight decay penalty method, all else being equal, since I sought to avoid inclusion of 
redundantly informing predictors.  

A partially factorial design was employed since not every combination of neural network 
input parameters was permitted. For instance, the boosting method cannot be performed with 
more than one hidden layer, nor is it appropriate to have a learning rate in a model that has not 
been boosted. Across these parameters, 16,400 and 4,000 models were built for fragment and 
colony health designation, respectively, across 2-4 validation approaches (Table S2): 15/5 
training/validation (both fragment & colony health designation), 13/4/3 training/validation/test 
samples set a priori (fragment health designation only), holdback (30% for fragment health 
designation & 25% for colony health designation), and “exclude 1/bin” (i.e., one random sample 
excluded from each fragment and colony health designation). For the holdback validation 
approach, fragment and colony health designation samples were selected randomly (in contrast 
with the validation column approach, in which at least one sample from each health designation 
was included). For certain neural networks, kfold (5) validation was instead used due to the 
stochastic nature of the platform (in which running the same model twice can lead to different 
solutions); kfold validation increased the likelihood that the re-run model was accurate in at least 
one of the five folds (saving a random seed being the alternative). 
 

OSM11. Stepwise discriminant analysis. All modeling types tested above considered all 
86 proteins. This means that, were a model with high predictive capacity uncovered, it would be 
necessary to measure the concentrations of all 86 proteins in future field samples. It might be 
desirable, however, to undertake a more simplistic, bottom-up, biomarker-based approach for 
assessing coral bleaching likelihood; why spend $250 to sequence 1,000 proteins when the 
concentration of a single protein demonstrates similar predictive capacity? For this reason, a 
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candidate biomarker-based modeling approach known as stepwise discriminant analysis was 
undertaken in which JMP Pro 16 calculated the minimum number of proteins required to build a 
model that can correctly classify the data into the experimental treatment (e.g., temperature, time, 
etc.) of interest with a certain degree of confidence. I programmed JMP’s stepwise discriminant 
analysis to create models that would predict with >85% confidence which coral sample was from 
which temperature, time, genotype, shelf, and fragment health designation using the minimum 
number of proteins. For instance, if the concentration data from two proteins could allow me to 
know which coral was from which temperature treatment at 80% confidence, a third protein 
would be added to the model provided that the model derived from all three proteins had a 
predictive confidence >85%. The confidence was determined by burning in random proteins, and 
an AI-based algorithm then simulated this random sampling several million times until the most 
parsimonious models were developed (i.e., the fewest number of proteins with the highest level 
of confidence). The AI then guessed which sample was from which treatment, and the guess was 
back-compared to the actual sample identity in a double-blind manner to determine correctness. 
Models featuring over 5-10 proteins were generally not considered.  
 
Online supplemental results (OSR) 
 

OSR1. Effect of Symbiodiniaceae assemblage on coral bleaching susceptibility. It is 
worth noting that the Symbiodiniaceae assemblages, which were inferred from mRNA contig 
mapping to published genomes (rather than from protein mapping), varied across host coral 
genotypes (see [2] & the online supplemental data file.), and the assemblage actually changed 
in response to experimental treatment for two colonies: C5 and D5; however, bleaching-resistant 
colonies were no more likely to host the hypothetically more thermotolerant Durusdinium spp. 
(X2 p>0.05), and some bleaching-resistant corals were even Breviolum spp.-dominated (online 
supplemental data file). Similarly, some bleaching-susceptible colonies hosted primarily 
Durusdinium spp.-dominated endosymbiont communities [2]. As discussed in the shotgun 
proteomic analysis [2], however, mass spectrometry-derived tryptic peptides are too short (6-10 
amino acids) to map confidently to one particular Symbiodiniaceae lineage (i.e., Breviolum vs. 
Durusdinium; see detailed treatise on this topic above.); as such, I did not consider 
Symbiodiniaceae assemblage as a predictor in the models discussed in the main text. 

 
OSR2. Clustering. Hierarchical clustering generated four protein clusters for each 

compartment (parenthetical correlation data have been provided only when WGCNA mean 
eigenprotein correlation values [R2] were >0.40 at p<0.05). For the coral host, clusters 1 (n=29 
proteins), 2 (n=14), 3 (n=1), and 4 (n=2) tended to partition coral samples by fragment health 
designation, shelf, sampling time, and temperature, respectively, whereas endosymbiont clusters 
1 (n=28 proteins), 3 (n=3 proteins), and 4 (n=2 proteins) tended to separate samples by the 
fragment health designation, temperature x time (R2=0.50, p<0.01), and temperature x time 
(R2=0.50, p=0.01; i.e., only 2 proteins could explain half of the variation due to temperature & 
time), respectively; endosymbiont cluster 2 (n=7 proteins) featured proteins unresponsive to 
treatment.  

Although these findings are interesting for data visualization and for reducing dataset 
complexity, I ultimately found them inferior to stepwise discriminant analysis and neural 
networks given my interest in identifying small groupings of proteins that could be used to build 
predictive models for coral behavior. I did, however, use the clustering data to generate 
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eigenprotein scores that could then be regressed against experimental parameters in a manner 
analogous to the popular WGCNA script that attempts to quantify relationships between clusters 
of genes and physiological and/or experimental factors. There were significant relationships with 
sampling day for clusters 9 (R2=0.47) and 4 (R2=0.39). Cluster 9 also had the most significant 
influence on temperature x time (p<0.01; R2=0.51). 

 
 OSR3. Methodological comparison: shotgun proteomics vs. iTRAQ. Of the 784 
shotgun-sequenced proteins from another study with samples from the same experiment [2] that 
passed all quality control, only 4 were 1) sequenced herein and 2) passed all quality control 
imposed herein; all were of host coral origin. The first two were OFAVBQ_DN217768_c1_g1_i5 
(cytoplasmic actin; top hit: XP_020600465.1 [e=0 against O. faveolata]) and 
OFAVBQ_DN222214_c0_g2_i2 (centrosome-associated protein; top hit: XP_020611767.1 [e=0 
against O. faveolata]); both were presumed to be high-abundance housekeeping proteins in the 
shotgun analysis (i.e., unaffected by experimental treatment, genotype, reef site of origin, etc.), 
and this was confirmed with iTRAQ. Although the third and fourth common proteins, 
OFAVBQ_DN223482_c3_g2_i3 (myosin-10; top hit: XP_020621196.1 [e=0 against Pocillopora 
damicornis]) and DELTA-actitoxin-Ate1a-like (top hit: XP_029210457.1 [e<10-84 against 
Acropora millepora]), were maintained at marginally higher levels in corals from Cheeca Rocks 
(p=0.03 & p=0.011, respectively) based on iTRAQ data, both missed the false discovery rate-
adjusted differentially concentrated protein cutoff; shotgun proteomics found their concentrations 
to be even less variable across samples (both proteins were found in 100% of samples.). 

Shotgun proteomics yielded a larger number of proteins that passed all quality control 
criteria yet iTRAQ is nevertheless attractive in that the concentration data from the smaller 
number of proteins sequenced that passed all stringent quality control criteria (n=86) are truly 
quantitative (vs. strictly presence-absence). It is worth noting though, that, had there been less of 
an interest in correctly assigning the compartment of origin (host vs. dinoflagellate 
endosymbiont) to the sequenced proteins, a larger number would have been maintained in the 
dataset (hundreds). On the other hand, a multi-thousand protein dataset is currently unrealizable 
using iTRAQ given the low labeling efficiency [7], which normally goes unreported since it 
requires advanced knowledge of MS bioinformatics software (e.g., Proteome Discoverer); poor 
labeling efficiency is a rampant issue that surely plagues the competing technology, Thermo-
Fisher Scientific’s “tandem mass tags,” as well, and must be confronted in the near future. No 
protein was found to be differentially concentrated across treatments by both shotgun proteomics 
and iTRAQ, though as evidenced above, this is likely due to the fact that the two methods yielded 
very different sets of proteins (with minimal overlap). 
 
 OSR4. Stepwise discriminant analysis-based coral biomarker profiling. Despite the fact 
that only 11 (9 unique) proteins differed significantly in concentration across all experimental 
parameters tested (Table 5), a larger number was identified in the stepwise discriminant analysis 
models: 17 and 10 for the coral host (Figure S1) and Symbiodiniaceae dinoflagellates (Figure 
S2), respectively. Of the 17 host proteins of interest, 3 were also deemed to be differentially 
concentrated by the response screening analysis (Table 5). When considering all 17 (Figure 2), 3 
could not be identified (18%). Of the remaining 14, the dominant functional categories were 
transcription (n=3; 18%), reproduction (n=2; 12%), cell cycle (n=2; 12%), and nuclear processes 
(n=2; 12%); this differentially concentrated protein assemblage differs from that of a prior 
shotgun proteomics analysis [2], in which lipid trafficking was the most environmentally-
sensitive host coral cellular pathway (X2 p<0.01).  
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Of the nine endosymbiont proteins of interest (Figure S2), five were also found to be 
differentially concentrated by the response screen (Table 5 & Figure S3d); the sixth and final 
differentially concentrated protein was not useful in stepwise discriminant analysis model 
building, and four proteins of interest were not differentially concentrated. When considering the 
10 endosymbiont differentially concentrated proteins and proteins of interest, only half could be 
identified with confidence, and these proteins were involved in 1) protein processing and 
trafficking (n=3), translation (n=1), and metabolism (n=1); in contrast, proteins involved in 
photosynthesis were more likely to be differentially concentrated across treatments in the shotgun 
proteomic analysis [2]. Please note that, while the training model misclassification rates are low 
(5-15%), their validation accuracy was much lower (Table S1). Although the candidate 
biomarker approach based on discriminant analysis may, then, be adept at modeling laboratory 
responses, it is clearly prone to overfitting; I ultimately found this approach, then, to be better 
suited for describing laboratory-derived findings than for developing robust predictive models.   
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Supplemental figures 
 
Figure S1. Host coral stepwise discriminant analysis. Centroids represent 95% confidence, and 
the control, high-temperature, and very high temperature samples are denoted by C, H, and V, 
respectively. Sample icons are colored by their 2b-RAD genotype name (a; e.g., “lightyellow” 
samples colored light yellow) except for genotypes black(b) and black(c), which are colored red 
and green, respectively. The numbers on the biplot rays correspond to the accession numbers 
found in the bottom-left corners of each panel; please see Table 5 for identities of the “proteins 
of interest” that were also differentially concentrated or the online supplemental data file for 
identities of the proteins of interest that were not also differentially concentrated proteins. The 
model classification rates were calculated from laboratory training samples only. 
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Figure S2. Symbiodiniaceae stepwise discriminant analysis. Centroids represent 95% 
confidence, and the control, high-temperature, and very high temperature samples are denoted by 
C, H, and V, respectively. Sample icons are colored by their 2b-RAD genotype name (e.g., 
“grey60” samples colored grey) except for genotypes black(b) and black(c), which are colored 
red and green, respectively. The numbers on the biplot rays correspond to the accession numbers 
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found in the bottom-left corners of each panel; please see Table 5 for identities of the “proteins 
of interest” that were also differentially concentrated or the online supplemental data file for 
identities of the proteins of interest that were not also differentially concentrated proteins. The 
model classification rates were calculated from laboratory training samples only. 
 
Figure S3. Venn diagrams depicting relative influence of various environmental predictors 
on numbers of differentially concentrated proteins (DCPs) and “proteins of interest” 
(POIs). Please note that the three host coral (a-b) and six endosymbiont (c-d) response screening 
(RSA)-identified proteins represent the true DCPs, with the remaining 14 and 4 proteins, 
respectively, instead representing POIs that were useful in stepwise discriminant analysis (SDA) 
model building (but not necessarily statistically significant at the false discovery rate-governed p-
value). Also note that “space” includes both reef site and shelf (inshore vs. offshore). The 9 DCPs 
and 18 POIs have also been shown as pooled across both compartments of the mutualism (e-f).  
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Figure S4. T2 plot of multivariate variability for the healthy control (HC), sub-lethally stressed 
(SLS), and actively bleaching (AB) samples. The upper control/confidence limit (UCL) has been 
presented as a hatched blue line. Using the default settings of JMP Pro 16, the two AB samples 
would both be considered multivariate outliers.  

 
 
Figure S5. Partial least squares-based correlation loading plot of the 20-sample dataset. The 
concentration data from the 86 proteins were standardized and used to construct a four-
dimensional multi-dimensional scaling plot; these coordinates were used as the model Y’s to 
reduce dataset complexity (blue). Black circles denote model predictors, many of which having 
been labeled. The samples (n=19) are denoted by their colony health designation: bleaching-
susceptible (BLS; red) vs. bleaching-resistant (BLR; green). One sample, D6-6, was excluded 
since its ultimate bleaching resilience could not be determined (too few fragments to fate-track 
over course of entire 31-day experiment). AB=actively bleaching. HTA=high-temperature- 
acclimating. SLS=sub-lethally stressed.  
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Online supplemental tables 
 
Table S1. Additional statistical approaches with log2-transformed protein concentrations. Only the approaches that yielded 
statistically significant results, identified differentially concentrated proteins, or correctly predicted coral bleaching susceptibility with 
100% accuracy are shown in Table 2. Please note that the number of predictors corresponds to the number used in model screening; 
the ultimate number in the final model that passed all quality control criteria could feature fewer predictors (see Table 6.). 
BIC=Bayesian information criterion. CHD=colony health designation. EP=experimental parameter (e.g., temperature, time, genotype, 
etc.). FDR=false discovery rate. FHD=fragment health designation. MDS=multi-dimensional scaling. NA=not applicable. 
OSDF=online supplemental data file. RV=response variable (Y). tMPM=training model percent misclassified. vMPM=validation 
model percent misclassified. 
 

Analytical goal 
  Approach (abbreviation) 

RV (Y)/predictor (X) Acceptance 
criterion 

Primary finding(s) Data location(s) 

Uncover multivariate treatment effects (explanatory)    
  Permutational multivariate ANOVA 86 proteins/all EP alpha=0.05 Effect of FHD on host proteome Table 4 
  Non-parametric MANOVA MDS coordinates/all EP alpha=0.05  Table 4 
Identify differentially concentrated proteins     
  Response screening analysis 86 proteins/all EP FDR-p<0.01 9 differentially concentrated 

proteins identified 
Table 5 & Figure 2 

  Stepwise discriminant analysis-manual 86 proteins/all EP MPM<10% 18 “proteins of interest” identified Table 5 & Figures S1-2 
Predict bleaching susceptibility   
  Fragment health designation (FHD; 15/5 training/validation samples)  Pass/fail quality control: reason  
    Bootstrap forest (100 trees) FHD/86 proteins MPM<10% Failed: vMPM=40% Data not shown 
    Discriminant analysis-automated FHD/86 proteins MPM<10% Failed: vMPM=40% Data not shown 
    Generalized multivariate regression (GMR)-lasso FHD/86 proteins MPM<10% Failed: vMPM=40% Data not shown 
    GMR-adaptive lasso FHD/86 proteins MPM<10% Failed: vMPM=40% Data not shown 
    GMR-elastic net FHD/86 proteins MPM<10% Failed: vMPM=40% Data not shown 
    GMR-adaptive elastic net FHD/86 proteins MPM<10% Failed: vMPM=40% Data not shown 
    GMR-pruned forward FHD/86 proteins MPM<10% Failed: vMPM=40% Data not shown 
    k-nearest neighbors FHD/86 proteins MPM<10% Failed: vMPM=40% Data not shown 
    Naïve Bayes FHD/86 proteins MPM<10% Failed: vMPM=60% Data not shown 
    Neural network FHD/86 proteins MPM<10% Passed: vMPM=0%  Tables 2 & 6 
    Nominal logistic FHD/86 proteins MPM<10% Failed: vMPM=60% Data not shown 
    Partial least squares (NIPALS) FHD/86 proteins MPM<10% Failed: vMPM=40% Data not shown 
    Stepwise discriminant analysis-manual FHD/86 proteins MPM<10% Failed: vMPM=40% Figures S1b & S2b 
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Analytical goal 
  Approach (abbreviation) 

RV (Y)/predictor (X) Acceptance 
criterion 

Primary finding(s) Data location(s) 

    Stepwise regression FHD/86 proteins MPM<10% Failed: vMPM=80% Data not shown 
    Support vector machine FHD/86 proteins MPM<10% Failed: vMPM=60% Data not shown 
    XGBoost FHD/86 proteins MPM<10% Failed: vMPM=60% Data not shown 
 Colony health designation (CHD; 15/5 training/validation samples)  
   Bootstrap forest (100 trees) CHD/86 proteins MPM<10% Failed: vMPM=40% Data not shown 
   Discriminant analysis-automated CHD/86 proteins MPM<10% Failed: vMPM=40% Data not shown 
   GMR-lasso CHD/86 proteins MPM<10% Passed: vMPM=0%                          Tables 2 & 6 
   GMR-adaptive lasso CHD/86 proteins MPM<10% Failed: vMPM=40% Data not shown 
   GMR-elastic net CHD/86 proteins MPM<10% Failed: MPM=40% Data not shown 
   GMR-adaptive elastic net CHD/86 proteins MPM<10% Failed: vMPM=40% Data not shown 
   GMR-pruned forward CHD/86 proteins MPM<10% Passed: vMPM=0%                            Tables 2 & 6 
   k-nearest neighbors CHD/86 proteins MPM<10% Failed: vMPM=40% Data not shown 
   Naïve Bayes CHD/86 proteins MPM<10% Failed: vMPM=60% Data not shown 
   Nominal logistic CHD/86 proteins MPM<10% Failed: vMPM=40% Data not shown 
   Neural network CHD/86 proteins MPM<10% Passed: vMPM=0% Tables 6 & S2-3 
   Partial least squares (NIPALS) CHD/86 proteins MPM<10% Failed: MPM=33% Data not shown 
   Stepwise discriminant analysis-manual CHD/86 proteins MPM<10% Failed: MPM=33% Data not shown 
   Stepwise regression (minimum BIC-forward) CHD/86 proteins MPM<10% Failed: MPM=67% Data not shown 
   Support vector machine CHD/86 proteins MPM<10% Failed: MPM=67% Data not shown 
   XGBoost CHD/86 proteins MPM<10% Failed: vMPM=60% Data not shown 

 
Table S2. Neural networks. The protein predictors (n=86) were log2-transformed prior to screening. In the “validation type” column, 
the first, second, and, when present, third values reflect the number of training, validation, and test samples, respectively; when the 25 
or 30% holdback approach was used to validate, samples were chosen randomly. For the fragment health designation (FHD) analyses, 
models were run in which either three (“FHD (3)”) or four (“FHD (4)”) outcomes were possible. The common three were healthy 
control, sub-lethally stressed, and actively bleaching. In the four-outcome analysis, high-temperature acclimating samples were also 
included (considered “health controls” in FHD (3)). When the “exclude 1/bin” validation method was used, one randomly selected 
sample from each group was excluded (three & four holdback samples for the three- & four-outcome analyses, respectively). 
CHD=colony health designation. HL=hidden layer. QC=quality control (validation &/or test model misclassification rate[s]=0).  
 

Response Validation type # HL #TanH 
nodes 

#Linear 
nodes 

#Gaussian 
nodes 

#Boosts Learning rate #Tours # 
models  

#passed 
QC (%) 

FHD (4) 15/5 1 or 2 0, 1, 2, 3, or 4 0, 1, 2, or 20 0, 0.1, 0.2, or 0.5 1, 10, 20, 50, or 100 2,100 257 (12.2%) 
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FHD (4) holdback (30%) 1 or 2 0, 1, 2, 3, or 4 0, 1, 2, or 20 0, 0.1, 0.2, or 0.5 1, 10, 20, 50, or 100 2,100 278 (13.2%) 
FHD (4) exclude 1/ bin 1 or 2 0, 1, 2, 3, or 4 0, 1, 2, or 20 0, 0.1, 0.2, or 0.5 1, 10, 20, 50, or 100 2,000 34 (1.7%) 
FHD (4) 13/4/3 1 or 2 0, 1, 2, 3, or 4 0, 1, 2, or 20 0, 0.1, 0.2, or 0.5 1, 10, 20, 50, or 100 2,000 12 (0.6%) 
FHD (3) 15/5 1 or 2 0, 1, 2, 3, or 4 0, 1, 2, or 20 0, 0.1, 0.2, or 0.5 1, 10, 20, 50, or 100 2,100 613 (29.1%) 
FHD (3) holdback (30%) 1 or 2 0, 1, 2, 3, or 4 0, 1, 2, or 20 0, 0.1, 0.2, or 0.5 1, 10, 20, 50, or 100 2,100 271 (12.9%) 
FHD (3) exclude 1/ bin 1 or 2 0, 1, 2, 3, or 4 0, 1, 2, or 20 0, 0.1, 0.2, or 0.5 1, 10, 20, 50, or 100 1,000 154 (15.4%) 
FHD (3) 13/4/3 1 or 2 0, 1, 2, 3, or 4 0, 1, 2, or 20 0, 0.1, 0.2, or 0.5 1, 10, 20, 50, or 100 3,000 44 (1.5%) 
CHD 15/5 1 or 2 0, 1, 2, 3, or 4 0, 1, 2, or 20 0, 0.1, 0.2, or 0.5 1, 10, 20, 50, or 100 2,000 122 (6.1%) 
CHD holdback (25%) 1 or 2 0, 1, 2, 3, or 4 0, 1, 2, or 20 0, 0.1, 0.2, or 0.5 1, 10, 20, 50, or 100 2,000 480 (24%) 

 
Table S3. Additional neural network models whose sample misclassification rates were 0%. A maximum of four models have 
been shown (see Table S2 for totals.), all featured a weight decay penalty with untransformed covariates unless noted otherwise. 
FHD=fragment health designation: either three (healthy controls, sub-lethally stressed, & actively bleaching; “FHD (3)”) or four (the 
former three plus high-temperature-acclimating; “FHD (4)”). On average, a model that was characterized by 100% accuracy possessed 
one hidden layer (HL), four each of TanH, linear, and Gaussian activation nodes, no boosts, absolute penalty method, untransformed 
covariates, and 100 tours. That said, only numbers of boosts and tours significantly influenced the misclassification rate (independent 
uniform input total effect sizes of 0.85 & 0.20, respectively), with the former negatively influencing accuracy; accuracy instead 
increased with increasing tours (no more than 100 were tested.). MPM=model percent misclassified. RMSE=root mean square error.  
 

Model 
# 

#HL # TanH 
activation 
nodes 

# linear 
activation  
nodes 

# Gaussian 
activation  
nodes 

Total 
activation 
nodes 

# Boosts 
(learning 
rate) 

#tours Training/validation/test 
MPM (RMSE) 

  1st &, when present, 2nd value=HL 1 & 2, respectively  
FHD (4): 15/5 training/validation (n=4/257)     
1 1   1 1 20 (0.1) 50 0/0% (0.00/0.00) 
2b 2 1/4 2/4 4/3 18 0 50 0/0% (0.00/0.00) 
3 1   3 3 20 (0.2) 50 0/0% (0.00/0.00) 
4a 2 3/0 4/1 2/0 10 0 50 0/0% (0.00/0.00) 
FHD (4): 30% random holdback (n=4/278)     
5a 2 1/1 2/3 4/2 13 0 50 0/0% (0.00/0.00) 
6b 2 2/4 0/1 0/4 11 0 100 0/0% (0.00/0.00) 
7b 2 2/1 4/3 4/0 14 0 100 0/0% (0.00/0.00) 
8 1 4  3 7 20 (0.2) 100 0/0% (0.00/0.00) 
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Model 
# 

#HL # TanH 
activation 
nodes 

# linear 
activation  
nodes 

# Gaussian 
activation  
nodes 

Total 
activation 
nodes 

# Boosts 
(learning 
rate) 

#tours Training/validation/test 
MPM (RMSE) 

FHD (4): exclude 1/bin (n=4/34)      
9 1   1 1 20 (0.1) 100 0/0% (0.00/0.00) 
10 1   2 2 20 (0.2) 100 0/0% (0.00/0.00) 
11b 1   2 2 20 (0.5) 100 0/0% (0.00/0.00) 
12b 2 4/0 0/1 2/0 7 0 50 0/0% (0.01/0.02) 
FHD (4): 13/4/3 training/validation/test (n=4/12)     
13c 2 1/1 2/3 2/0 9 0 50 0/0.25/0% (0.18/0.40/0.35) 
14b 2 2/3 0/0 4/0 9 0 1 0.69/0.25/0% (0.73/0.64/0.42) 
15a,c 1 4 0 1 5 2 (0.1) 100 0/0/0.33% (0.03/0.13/0.53) 
16a,c 1 4 0 4 8 20 (0.5) 100 0/0/0.33% (0.00/0.03/0.58) 
FHD (3): 15/5 training/validation (n=4/613)     
17c 2 3/1 4/3 4/3 18 0 20 0/0% (0.00/0.00) 
18 2 4/2 0/1 3/0 10 0 100 0/0% (0.00/0.00) 
19b 1 3 1 3 7 20 (0/5) 100 0/0% (0.00/0.00) 
20c 2 2/3 3/2 0/3 13 0 100 0/0% (0.00/0.00) 
FHD (3): 30% random holdback (n=4/271)     
21 2 2/4 0/1 3/3 13 0 50 0/0% (0.02/0.10) 
22a-b 1 4 2 1 7 2 (0.5) 10 0/0% (0.01/0.03) 
23a-b 2 4/3 1/2 4/4 18 0 50 0/0% (0.00/0.05) 
24a-b 1 1 4 1 6 20 (0.5) 50 0/0% (0.00/0.05) 
FHD (3): 13/4/3 training/validation/test (n=4/44)     
25a 2 4/0 1/1 0/2 8 0 20 0/0% (0.00/0.00) 
26a,c 2 3/3 1/4 2/3 16 0 100 0/0% (0.00/0.00) 
27c 1 2 4 1 7 20 (0.1) 20 0/0% (0.00/0.00) 
28 2 4/3 3/2 1/4 17 0 50 0/0% (0.00/0.00) 
CHD: 15/5 training/validation (n=4/122)     
29a-b 1 3 0 1 4 20 (0) 20 0/0% (0.18/0.00) 
30a 2 4/4 4/3 4/4 23 0 50 0/0% (0.00/0.00) 
31b 1 1 0 4 5 2 (0.5) 100 0/0% (0.04/0.00) 
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Model 
# 

#HL # TanH 
activation 
nodes 

# linear 
activation  
nodes 

# Gaussian 
activation  
nodes 

Total 
activation 
nodes 

# Boosts 
(learning 
rate) 

#tours Training/validation/test 
MPM (RMSE) 

32a 2 0/0 2/2 4/2 10 0 100 0/0% (0.00/0.00) 
CHD: 25% random holdback (n=4/480)     
33a 2 2/4 3/3 3/4 19 0 50 0/0% (0.00/0.00) 
34b 2 1/1 2/1 1/4 10 0 100 0/0% (0.00/0.00) 
35 1 1 2 2 5 0 20 0/0% (0.00/0.00) 
36b 2 4/1 3/4 1/3 16 0 100 0/0% (0.00/0.00) 
mode 2 4/0 0/0 1 & 4/0 8 0 100  

                         aCovariates transformed. bsquared penalty method. cabsolute penalty method.  
 
 


