Supporting information for

Old Donors for New Molecular Conductors: Combining TMTSF and BEDT-TTF with Anionic $(TaF_6)_{1-x}/(PF_6)_x$ Alloys

Magali Allain¹, Cécile Mézière¹, Pascale Auban-Senzier² and Narcis Avarvari^{1,*}

- ¹ Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France; <u>magali.allain@univ-angers.fr</u>; <u>cecile.meziere@univ-angers.fr</u>
- ² Laboratoire de Physique des Solides, Université Paris-Saclay CNRS UMR 8502, Bât. 510, 91405 Orsay, France; <u>senzier@lps.u-psud.fr</u>
- * Correspondence: narcis.avarvari@univ-angers.fr; Tel.: +33-2-4173-5084

Single crystal X-ray crystallography

Table S1. Crystal Data and Structure Refinement for $(TMTSF)_2(TaF_6)_{0.12}(PF_6)_{0.88}$, $(TMTSF)_2(TaF_6)_{0.44}(PF_6)_{0.56}$, $(TMTSF)_2(TaF_6)_{0.44}$ and $(TMTSF)_2(TaF_6)_{0.84}(PF_6)_{0.16}$.

Compound	(TMTSF)2 (TaF6)0.12(PF6)0.88	(TMTSF)2 (TaF6)0.44(PF6)0.56	(TMTSF)2 (TaF6)0.56(PF6)0.44	(TMTSF)2 (TaF6)0.84(PF6)0.16
Empirical formula	$C_{20}H_{24}F_6P_{0.88}Se_8Ta_{0.12}$	$C_{20}H_{24}F_6P_{0.56}Se_8Ta_{0.44}$	$C_{20}H_{24}F_6P_{0.44}Se_8Ta_{0.56}$	$C_{20}H_{24}F_6P_{0.16}Se_8Ta_{0.84}$
Molecular weight	1059.49	1107.78	1125.63	1167.02
т (К)	296(2)	293(2)	293(2)	293(2)
Wavelength (Å)	1.54184	1.54184	1.54184	1.54184
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
<i>a</i> (Å)	7.2868(8)	7.2916(4)	7.2939(7)	7.2911(8)
<i>b</i> (Å)	7.708(1)	7.7185(4)	7.7194(6)	7.7323(9)
<i>c</i> (Å)	13.5513(8)	13.6966(5)	13.748(1)	13.8709(8)
α(deg)	83.285(8)	83.021(4)	83.080(7)	82.821(7)
β(deg)	86.195(6)	85.826(4)	85.783(8)	85.416(7)
γ(deg)	71.09(1)	71.339(5)	71.365(8)	71.66(1)
V (Å ³)	714.8(1)	724.44(6)	727.6(1)	735.8(1)
Z	1	1	1	1
<i>D</i> _c (g cm ⁻³)	2.461	2.539	2.569	2.634
F(000)	492	511	518	534
Abs coeff (mm ⁻¹)	13.734	15.534	16.196	17.691
Crystal size (mm ³)	0.188× 0.028 × 0.016	0.141× 0.032 × 0.024	0.13× 0.021 × 0.012	0.092× 0.017 × 0.016
heta (min / max)	3.285 / 73.994	3.253 / 75.812	3.240 / 76.297	3.214 / 72.067
Transmission (min/max)	0.934 / 1.000	0.285 / 0.698	0.642 / 1.000	0.973 / 1.000
Data collected/unique	5167 / 2769	6386 / 2954	5263 / 2932	5154 / 2811
Data observed	1968	2733	2402	2382
R (int)	0.0334	0.0195	0.0344	0.0312
GOF on F ²	1.024	1.038	1.021	1.028
final R indices ^a [I >	$R_1 = 0.0380,$	R ₁ = 0.0274,	R ₁ = 0.0412,	R1 = 0.0354,
2 <i>σ</i> (<i>I</i>)]	wR ₂ = 0.0889	wR ₂ = 0.0705	wR ₂ = 0.0988	wR2 = 0.0869
Dindiana (all data)	R ₁ = 0.0597,	R ₁ = 0.0297,	R ₁ = 0.0522,	R1 = 0.0444,
R indices (all data)	wR ₂ = 0.0998	wR ₂ = 0.0725	$wR_2 = 0.1060$	wR2 = 0.0929
Largest peak in final: difference (e A ⁻³)	0.479 / -0.751	0.670 / -0.722	0.752 / -0.935	0.865 / -0.659
CCDC number	2071481	2071482	2071483	2071484

^a $R(F) = \Sigma ||F_o| - |F_c||/\Sigma |F_o|; wR(F^2) = [\Sigma [w(F_o^2 - F_c^2)^2]/\Sigma [w(F_o^2)^2]]^{1/2}$

Compound	(TMTSF)₂TaF ₆	(TMTSF)₂TaF ₆	δ ₀ -(BEDT-TTF) ₂ (TaF ₆)0.43(PF ₆)0.57	δ _m -(BEDT-TTF) ₂ (TaF ₆)0.94(PF ₆)0.06	(BEDT-TTF)2(TaF6)2, CH2Cl2
Empirical formula	$C_{20}H_{24}F_6Se_8Ta$	C ₂₀ H ₂₄ F ₆ Se ₈ Ta	$C_{20}H_{16}F_6P_{0.57}S_{16}Ta_{0.43}$	$C_{20}H_{16}F_6P_{0.06}S_{16}Ta_{0.94}$	$C_{21}H_{18}CI_2F_{12}S_{16}Ta_2$
Molecular weight	1191.02	1191.02	979.35	1055.54	1444.11
т (К)	293(2)	100(1)	295(2)	298(2)	295(2)
Wavelength (Å)	1.54184	1.54184	1.54184	1.54184	1.54184
Crystal system	Triclinic	Triclinic	Orthorhombic	Monoclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1	Pnna	12/a ^b	<i>P</i> -1
<i>a</i> (Å)	7.3130(8)	7.1344(4)	14.9866(4)	14.939(1)	8.2558(2)
<i>b</i> (Å)	7.7519(7)	7.7255(5)	33.0248(7)	6.6793(4)	9.8754(4)
<i>c</i> (Å)	13.898(1)	13.7204(9)	6.6706(1)	33.584(1)	12.7497(5)
α(deg)	82.854(7)	83.378(5)	90	90	80.069(4)
β(deg)	85.340(8)	87.118(5)	90	93.914(5)	85.341(3)
γ(deg)	71.728(9)	70.200(6)	90	90	79.823(3)
V (Å ³)	741.6(1)	706.72(8)	3301.5(1)	3343.1(3)	1006.41(6)
Z	1	1	4	4	1
<i>D</i> _c (g cm ⁻³)	2.667	2.798	1.970	2.097	2.383
F(000)	543	543	1945	2063	688
Abs coeff (mm ⁻¹)	18.515	19.428	13.032	15.582	19.562
Crystal size (mm ³)	0.098× 0.061 × 0.022	0.098×0.061× 0.022	0.215× 0.149 × 0.061	0.118× 0.049 × 0.019	0.329× 0.062 × 0.031
θ (min / max)	3.208 / 73.734	3.243 / 73.023	2.676 / 76.021	2.638 / 71.997	3.524 / 76.193
Transmission (min/max)	0.444 / 1.000	0.536 / 1.000	0.440 / 1.000	0.310 / 0.767	0.090 / 0.735
Data collected/unique	4659 / 2820	4463 / 2680	10452 / 3435	7179 / 3214	7612 / 4063
Data observed	2063	2524	3187	2534	3952
R (int)	0.0585	0.0268	0.0191	0.0338	0.0206
GOF on F ²	0.948	1.030	1.044	1.090	1.023
final R indices ^a [I >	R1 = 0.0476,	R1 = 0.0317,	R ₁ = 0.0359,	$R_1 = 0.0450$,	R1 = 0.0316,
2 <i>σ</i> (<i>I</i>)]	wR2 = 0.11404	wR2 = 0.0843	$wR_2 = 0.0854$	$wR_2 = 0.1098$	wR2 = 0.0860
R indices (all data)	R1 = 0.0652, wB2 = 0.1271	R1 = 0.0341, wB2 = 0.0876	$R_1 = 0.0386,$ $wR_2 = 0.0875$	$R_1 = 0.0593,$	R1 = 0.0321, wR2 = 0.0866
Largest peak in final: difference (e A ⁻³)	1.030 / -0.852	1.171 / -1.617	0.771 / -0.783	1.016 / -0.538	1.874 / -1.436
CCDC number	2071485	2071486	2071487	2071488	2071489

Table S2. Crystal Data and Structure Refinement for $(TMTSF)_2TaF_6$ (293 K and 100 K), δ_o -(BEDT-TTF)₂(TaF₆)_{0.43}(PF₆)_{0.57}, δ_m -(BEDT-TTF)₂(TaF₆)_{0.94}(PF₆)_{0.06}, and (BEDT-TTF)₂(TaF₆)₂·CH₂Cl₂.

^a $R(F) = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$; wR (F²) = $[\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]]^{1/2}$

^b Reduced cell in *P*-1 space group: a = 6.6738(4) Å, b = 14.947(1) Å, c = 18.213(1) Å, α = 110.307(7)°, β = 100.540(6)°, γ = 90.006(6)°, V = 1671.2(2) Å

Crystal structures of TMTSF salts

Compound (TMTSF)₂(TaF₆)_{0.12}(PF₆)_{0.88}

Figure S1. Molecular structure of $(TMTSF)_2(TaF_6)_{0.12}(PF_6)_{0.88}$. The three independent fluorine atoms of the anion are disordered over two positions with partial refined occupancy factors of 0.78/0.22.

Figure S2. Picture of (TMTSF)₂(TaF₆)_{0.12}(PF₆)_{0.88} needles with nested black platelets of (TMTSF)₃Ta₂F₁₀O.

Compounds (TMTSF)₂(TaF₆)_{0.44}(PF₆)_{0.56}

Figure S3. Molecular structure of $(TMTSF)_2(TaF_6)_{0.44}(PF_6)_{0.56}$. The three independent fluoride atoms of the anion are disordered over two positions with partial refined occupancy factors of 0.76/0.24.

Figure S4. Packing of donors in the structure of (TMTSF)₂(TaF₆)_{0.44}(PF₆)_{0.56}.

Compounds (TMTSF)₂(TaF₆)_{0.56}(PF₆)_{0.44}

Figure S5. Molecular structure of $(TMTSF)_2(TaF_6)_{0.56}(PF_6)_{0.44}$. Two of the three independent fluoride atoms of the anion are disordered over two positions with partial refined occupancy factors of 0.71/0.29.

Figure S6. Picture of (TMTSF)₂(TaF₆)_{0.56}(PF₆)_{0.44} thin needles.

Figure S7. Molecular structure of $(TMTSF)_2(TaF_6)_{0.84}(PF_6)_{0.16}$. The three independent fluoride atoms of the anion are disordered over two positions with partial refined occupancy factors of 0.61/0.39.

Figure S8. Picture of (TMTSF)₂(TaF₆)_{0.84}(PF₆)_{0.16} needles (left) and picture of (TMTSF)₃Ta₂F₁₀O prisms.

¹⁹F NMR spectroscopy of TMTSF salts

Nuclear magnetic resonance spectra were recorded on a Bruker Avance DRX 500 spectrometer operating at 470 MHz for 19F. Chemical shifts are expressed in parts per million (ppm). The following abbreviations are used: b, broad; s, singlet; d, doublet; quint, quintet; m, multiplet.

(TMTSF)₂(TaF₆)_{0.12}(PF₆)_{0.88}

¹⁹F NMR (DMSO-d6, 500 MHz, δ in ppm): -70.90/-69.39 (d, J = 755 Hz) for PF₆⁻ / -4.92, 18.34 (d), 33.68 (d, Ta₂F₁₀O, 8F_{eq}) and 41.48 (bs, TaF₆) for TaF₆⁻ and Ta₂F₁₀O. The integration gives $\approx 68\%$ PF₆⁻.

Figure S9. ¹⁹F NMR (DMSO-d6) spectrum of the crystalline material obtained by electrocrystallization of TMTSF with a mixture $(n-Bu_4N)TaF_6/(n-Bu_4N)PF_6$ of nominal composition Ta/P 0.2/0.8.

¹⁹F NMR (DMSO-d6, 500 MHz, δ in ppm): -70.90/-69.39 (d, J = 755 Hz) for P \mathbf{F}_6^- / -4.90 (quint), 18.35 (d) and 41.32 (bs, TaF₆) for Ta \mathbf{F}_6^- and Ta₂ \mathbf{F}_{10} O. Integration gives \approx 52% of PF₆⁻.

Figure S10. ¹⁹F NMR (DMSO-d6) spectrum of the crystalline material obtained by electrocrystallization of TMTSF with a mixture (*n*-Bu₄N)TaF₆/ (*n*-Bu₄N)PF₆ of nominal composition Ta/P 0.5/0.5.

¹⁹F NMR (DMSO-d6, 500 MHz, δ in ppm): -70.90/-69.38 (d, J = 760 Hz) for P \mathbf{F}_6^- / -5.01 (quint), 18.32 (d) and 41.12 (bs, TaF₆) for Ta \mathbf{F}_6^- and Ta₂ \mathbf{F}_{10} O. Integration gives \approx 60% of PF₆⁻.

Figure S11. ¹⁹F NMR (DMSO-d6) spectrum of the crystalline material obtained by electrocrystallization of TMTSF with a mixture (*n*-Bu₄N)TaF₆/ (*n*-Bu₄N)PF₆ of nominal composition Ta/P 0.5/0.5.

¹⁹F NMR (DMSO-d6, 500 MHz, δ in ppm): -70.90/ -69.39 (d, J = 755 Hz) for P \mathbf{F}_{6}^{-} / -5.26 (quint), 18.28 (d), 33.73 (d, Ta₂ \mathbf{F}_{10} O, 8 \mathbf{F}_{eq}) and 41.48 (bs, Ta \mathbf{F}_{6}) for Ta \mathbf{F}_{6}^{-} and Ta₂ \mathbf{F}_{10} O. Integration gives \approx 16% of P \mathbf{F}_{6}^{-} .

Figure S12. ¹⁹F NMR (DMSO-d6) spectrum of the crystalline material obtained by electrocrystallization of TMTSF with a mixture (*n*-Bu₄N)TaF₆/ (*n*-Bu₄N)PF₆ of nominal composition Ta/P 0.8/0.2.

Crystal structures of BEDT-TTF salts

Compound δ_o -(BEDT-TTF)₂(TaF₆)_{0.43}(PF₆)_{0.57}

Figure S13. Picture of δ_o -(BEDT-TTF)₂(TaF₆)_{0.43}(PF₆)_{0.57} needles.

Compound δ_m -(BEDT-TTF)₂(TaF₆)_{0.94}(PF₆)_{0.06}

Figure S14. Picture of δ_m -(BEDT-TTF)₂(TaF₆)_{0.94}(PF₆)_{0.06} platelets.

¹⁹F NMR spectroscopy

The crystalline material was dissolved in DMSO-d6.

¹⁹F NMR (DMSO-d6, 500 MHz, δ in ppm): -70.90/-69.39 (d, J = 755Hz) for P**F**₆ / 18.32 (d), 33.66 (d, Ta₂F₁₀O, 8F_{eq}) and 41.39 (m) for Ta**F**₆. Integration gives $\approx 6\%$ of PF₆.

Figure S15. ¹⁹F NMR (DMSO-d6) spectrum of the crystalline material obtained by electrocrystallization of BEDT-TTF with a mixture $(n-Bu_4N)TaF_6/(n-Bu_4N)PF_6$ of nominal composition Ta/P 0.8/0.2.

$Compound \ (BEDT-TTF)_2(TaF_6)_2 \cdot CH_2Cl_2$

Figure S16. Picture of (BEDT-TTF)₂(TaF₆)₂·CH₂Cl₂ thick needles.

Table S3. Comparison of the proportion of phosphorus and tantalum between the inserted precursor salts used for the electrocrystallization syntheses (nominal ratio), the refined ratio in the corresponding crystallographic structures (refined ratio) and the ¹⁹F NMR integration in the TMTSF and BEDT-TTF salts.

Donor	TMTSF	TMTSF	TMTSF	TMTSF	BEDT-TTF	BEDT-TTF
Nominal rate	20%-(<i>n</i> -Bu ₄ N)TaF ₆	50%-(<i>n</i> -Bu ₄ N)TaF ₆	50%-(<i>n</i> -Bu ₄ N)TaF ₆	80%-(<i>n</i> -Bu ₄ N)TaF ₆	20%-(<i>n</i> -Bu ₄ N)TaF ₆	80%-(<i>n</i> -Bu ₄ N)TaF ₆
	80%-(n-Bu ₄ N)PF ₆	50%-(<i>n</i> -Bu ₄ N)PF ₆	50%-(<i>n</i> -Bu ₄ N)PF ₆	20%-(<i>n</i> -Bu ₄ N)PF ₆	80%-(<i>n</i> -Bu ₄ N)PF ₆	20%-(<i>n</i> -Bu ₄ N)PF ₆
Crystal	Ta: 0.12	Ta: 0.44	Ta: 0.56	Ta: 0.84	Ta: 0.43	Ta: 0.94
refined rate	P: 0.88	P: 0.56	P: 0.44	P: 0.16	P: 0.57	P: 0.06
Crystal	(TMTSF) ₂	(TMTSF) ₂	(TMTSF) ₂	(TMTSF) ₂	δ_o -(BEDT-TTF) ₂	δ_m -(BEDT-TTF) ₂
Formula	(TaF ₆) _{0.12} (PF ₆) _{0.88}	(TaF ₆) _{0.44} (PF ₆) _{0.56}	(TaF ₆) _{0.56} (PF ₆) _{0.44}	(TaF ₆) _{0.84} (PF ₆) _{0.16}	(TaF ₆) _{0.43} (PF ₆) _{0.57}	(TaF ₆) _{0.94} (PF ₆) _{0.06}
¹⁹ F NMR	Ta: 0.32	Ta: 0.48	Ta: 0.40	Ta: 0.84	-	Ta: 0.94
analysis	P: 0.68	P: 0.52	P: 0.60	P: 0.16		P: 0.06

Table S4. Central C=C and C–S internal bond distances (Å) of (TMTSF)₂(TaF₆)_{0.12}(PF₆)_{0.88}, (TMTSF)₂(TaF₆)_{0.44}(PF₆)_{0.56}, (TMTSF)₂(TaF₆)_{0.44}, (TMTSF)₂(TaF₆)_{0.84}(PF₆)_{0.16} and (TMTSF)₂TaF₆ (293 K and 100 K).

	(TMTSF) ₂	(TMTSF) ₂ (T2F ₂) ₂ (PF ₂) ₂	(TMTSF) ₂	(TMTSF) ₂	(TMTSF)₂TaF ₆	(TMTSF)₂TaF ₆
	(IAF6J0.12(FF6J0.88	(I ar6j0.44(Fr6j0.56	(IAF6) 0.56 (FF6) 0.44	(a F6) 0.84 (F F6) 0.16	(295 K)	(100 K)
C1—C2	1.355(8)	1.355(4)	1.359(9)	1.347(9)	1.356(12)	1.352(7)
Se1—C1	1.861(6)	1.876(3)	1.874(6)	1.874(5)	1.875(8)	1.882(5)
Se2—C1	1.879(7)	1.877(3)	1.874(5)	1.889(6)	1.886(8)	1.884(5)
Se3—C2	1.884(6)	1.881(3)	1.876 (5)	1.884(6)	1.878(8)	1.878(5)
Se4—C2	1.885(6)	1.877(3)	1.881(5)	1.876(5)	1.875(8)	1.880(5)

Table S5. Central C=C and C–S internal bond distances (Å) of δ_0 -(BEDT-TTF)₂(TaF₆)_{0.43}(PF₆)_{0.57}, δ_m -(BEDT-TTF)₂(TaF₆)_{0.94}(PF₆)_{0.06} and (BEDT-TTF)₂(TaF₆)₂·CH₂Cl₂.

	δ_{0} -(BEDT-TTF) ₂	δ_m -(BEDT-TTF) ₂	(BEDT-TTF)2
	(1016)0.43(116)0.57	(1016)0.94(116)0.06	(101 6/2, C112C12
C1—C2	1.362(4)	1.356(7)	1.386(5)
\$1—C1	1.732(3)	1.735(5)	1.721(4)
S2—C1	1.737(3)	1.745(6)	1.716(4)
\$3—C2	1.738(3)	1.739(5)	1.721(4)
\$4—C2	1.738(3)	1.737(5)	1.720(4)

Single crystal resistivity measurements

Figure S17. Electrical resistivity of three single crystals of $(BEDT-TTF)_2(TaF_6)_2 \cdot CH_2Cl_2$ at room temperature plotted as a function of the applied voltage used for a two contact measurement.

Figure S18. Temperature dependence of the electrical resistivity of a single crystal (#3) of (BEDT-TTF)₂(TaF₆)₂·CH₂Cl₂ plotted as log ρ versus 1/T measured with different applied voltages: 0.2, 0.5 and 1 V. The red line is the linear fit to the data giving the activation energy E_a.