
Supplementary material: Methods 
 

Model input: downscaled layers 
 
Because models project bioclimatic variables for 2050 differently, choosing the best model to represent 
2050 conditions is challenging. To dampen the influence of contrasting model assumptions, we averaged 
layers for a set of models (table S1). We adopted the list of models from de Sherbinin et al.’s (2014) 
study in Mali. We downloaded 5 arc-minute data from the Research Program on Climate Change, 
Agriculture, and Food Security (http://www.ccafs-climate.org/data_spatial_downscaling/). These layers 
represent downscaled AR5 RCP4.5 and RCP8.5. We did not need to do this averaging process for 
baseline data because those layers were based on observations, rather than models of 2050 climate 
conditions.  
 
Table S1. Models averaged for input bioclimatic variables. (Source: de Sherbinin et al. 2014) 
 

Model Source 

CanES M2 Canadian Centre for Climate Modelling and Analysis CCCMA (Canada) 

CCSM4 National Center for Atmospheric Research NCAR (USA) 

CNRM-CM5 Centre National de Recherches Meteorologiques and Centre Europeen de 
Recherche et Formation Avancees en Calcul Scientifique CNRM-CERFACS (France) 

CSIRO-Mk3-6-0 Queensland Climate Change Centre of Excellence and Commonwealth Scientific 
and Industrial Research Organization CSIRO-QCCCE (Australia) 

GISS-E2-R NASA Goddard Institute for Space Studies NASA GISS (USA) 

HadGEM2-ES UK Met Office Hadley Centre MOHC (UK) 

MIROC-ESM University of Tokyo, National Institute for Environmental Studies and Japan 
Agency for Marine-Earth Science and Technology MIROC (Japan) 

MIROC 5 University of Tokyo, National Institute for Environmental Studies and Japan 
Agency for Marine-Earth Science and Technology MIROC (Japan) 

MPI-ESM-LR Max Planck Institute for Meteorology MPI (Germany) 

MRI-CGC M3  Meteorological Research Institute MRI (Japan) 



 

Input data: MIRCA 2000 
 
The MIRCA2000 dataset, used to represent cotton-growing areas, is derived from national and sub-
national agriculture census data, represents crop area harvested in 1998-2002 (Portmann et al. 2010). 
We used annual rainfed cotton data at a 5 arc-minute resolution (cell size approximately 8,400 ha at this 
latitude). Sparse cotton production occurs across much of the study region: annual harvested area 
ranges from 1 to over 1,900 ha/cell, but with half of all non-zero cells have less than 30 ha. We excluded 
areas with less than 30 ha per 5-minute cell (0.34 percent of a cell). We used remaining areas to 
represent cotton production regions (0.34-22.7 percent of a cell, or 30 to 1,927 ha/cell). 
 
Within this concentrated area, we then generated 500 random points, with a minimum separation of 5 
km, to represent presence points within areas of relatively high production (Evangelista et al. 2013). In 
addition to using presence points, we generated 500 random pseudo-absence points as part of model 
implementation. 

Model agreement 
 
It is not possible to validate input climate layers for 2050 by comparing them to observations, but one 
way to assess confidence in models of future conditions is to evaluate agreement among them (de 
Sherbinin et al. 2014). Stronger agreement among climate models indicates convergence among GCM 
modelling groups in understanding of climate processes and their impacts. For our most important 
bioclimatic variables (section 2.4), we evaluated agreement by mapping the variation among the 10 
climate models. To do this, we generated 5000 random points within the study area and sampled values 
of each of the 10 models at those 5000 points. We then calculated proportional difference between 
models at each point: that is, for each point location we identified the maximum and minimum values of 
the 10 climate models. We then calculated agreement as ((max - min) / max). 2.7 Comparison to global 
regions. 
 
In general, when diverse models converge on common agreement in outcomes, that supports 
confidence in those outcomes. We assessed the agreement among the 10 input models (Table S1) with 
a point sampling approach: We generated a random sample of 5,000 points within the study area and 
sampled all 10 models at each point. We then calculated (maximum – minimum value) / maximum at 
each point.  
 
For purposes of visualization, we then used inverse distance weighted interpolation to map the 
distribution of those values. Small values, approaching 0, represent small disagreement among models. 
Larger values, approaching 1, represent greater disagreement (fig. S1). Disagreement among 
downscaled models was greater for precipitation than for temperature variables. This difference is 
consistent with previous discussions of uncertainty around future precipitation regimes (Adeniyi 2016, 
USGS n.d., CILSS 2016). 



 
Agreement among models was stronger for temperature variables than for precipitation variables (fig. 
S1). Strong agreement among models of temperature variables, which supports confidence in the 
direction of temperature limitations. For mean temperature of hottest month (Bio 10), climate model 
values varied by less than 10 percent. This strong agreement suggests good confidence in temperature 
projections. For precipitation variables, within the area where cotton occurs, differences for 
precipitation variables were 20 to 40 percent for both RCP4.5 and RCP8.5. This greater disagreement 
indicates lower confidence in precipitation projections. Because three of our five variables represent 
temperature factors, and because agreement was good in the area where presence points occurred, it is 
reasonable to have confidence that our model represents a good understanding of available 
understanding of future climate conditions. However, uncertainty in precipitation projections is 
important to recognize when assessing risk for rainfed crops.  
 
In general, agreement was greater for temperature variables and poorer for precipitation variables, 
especially in the arid northern reaches of the study area. Here precipition is low, so changes of a few 
mm comprises a large proportional change in the arid northern reaches of the study area. 
 
 

 
Fig. S1 Disagreement (variation) among 10 input models for three of our model layers. Values represent 
(the largest model value – the smallest model value) / the largest model value. Large values represent 
greater difference in model projections. Variables shown are annual precipitation, mm (Bio 12); 
temperature seasonality (std dev; Bio 4); and mean temperature of warmest quarter, ᵒ C (Bio 10). 



 

Projected changes in bioclimatic variables by 2050 
 
To evaluate how individual bioclimatic variables influenced changes in cotton distribution (from baseline 
years to 2050), we mapped values for our input layers using ranges of Cloglog likelihood output. That is, 
SDM output produced a curve showing likelihood of cotton occurrence points across a range of each 
variable. We used these ranges to classify areas as too hot/dry, suitable, or too cool/wet. For the 
purpose of visualization, we designated values corresponding to a Cloglog likelihood of cotton presence 
greater than 0.7 (strongly suitable variable values), greater than 0.5 but less than 0.7 (moderately 
suitable), and below 0.5 (less suitable). 

For baseline conditions, we mapped the ensemble average input layers (used in Maxent). To 
show changes, we used class breaks corresponding to likelihood of occurrence of cotton presence 
points, as shown in Maxent Cloglog output. For each of the variables plotted, we identified the variable 
range corresponding to high, medium, and low likelihood of cotton occurrence in recent past conditions 
(fig. S2a). We show here the two strongest contributors to the Maxent model, Bio 12 and Bio 4, and the 
two seasonal temperature variables, Bio 10 and Bio 9.   
 

 
Fig. S2a Method of designating optimal ranges for variables from Cloglog graphs in Maxent output. For 
annual precipitation (Bio12), a Cloglog likelihood greater than 0.7 (upper dashed line) corresponds to 
precipitation between 900 and 1300 mm (vertical dotted line). A Cloglog likelihood of presence greater 
than 0.5 but less than 0.7 corresponds to precipitation greater than 600 mm and less than 1500 mm. 
Colors in fig. S2b and S2c correspond to value ranges that are above 0.7 (yellow) between 0.5 and 0.7 
(orange or green), and below 0.5 (red or blue). Red corresponds to hotter or drier conditions; blue 
corresponds to wetter or cooler conditions.  
 



 
 
Fig. S1b  Change from baseline to RCP4.5 and RCP8.5 for input layers annual precipitation (Bio12) and 
temperature standard deviation (Bio4). Colors represent the range of variable values that have a Cloglog 
likelihood greater than 0.5 or 0.7 (see fig. S2a). Red corresponds to hotter or drier conditions; blue 
corresponds to wetter or cooler conditions.  

 
 
Fig.S2c  Change from baseline to RCP4.5 and RCP8.5 for input layers mean temperature of warmest 
quarter (Bio10) and mean temperature of driest quarter (Bio9). Colors represent the range of variable 
values that have a Cloglog likelihood greater than 0.5 or 0.7 (see fig. S2a). Red corresponds to hotter 
conditions; blue corresponds to cooler conditions.  



 
 
Global cotton producing regions 
 
To compare climate conditions in West Africa to other study regions, we identified areas where cotton 
production was greater than 30 ha per cell globally. We note that cell size varies across this region, but 
this generalized cutoff allowed us to distinguish major production areas from sparse production areas. 
With this threshold, cotton production clustered into seven major regions, outlined by boxes in fig. S3. 
We plotted baseline and future climate conditions for these regions in fig. 5 in the main body of the 
paper.  

 
Fig. S3 Areas with annual rainfed cotton production > 30 ha/cell in MIRCA2000 data. These regions were 
evaluated in fig. 5. 
Comparison of baseline projections from different algorithms 
 
Many approaches to SDMs exist. We compared several algorithms to assess variation in output and test 
statistics. While models varied in details, the general prediction of suitability for current suitable 
conditions was broadly similar among models (fig. S4). We therefore selected the model with strongest 
AUC and TSS metrics for subsequent analysis (see table 1 in the main paper).  



 
 
Fig. S4 Baseline projection of suitable area for rainfed cotton, from 5 algorithms. Algorithms are Artificial 
neural network (ANN), Maximum entropy (Maxent), Generalized additive model (GAM), Generalized 
linear model (GLM), and Multiple adaptive regression spline (MARS). AUC and TSS statistics are given in 
table 1 in the main paper. The poorest performing algorithm for our data, boosted regression tree, is 
omitted.  
 
 

Jackknife results 
 
While the full model ranked variables in importance, jackknife output gives further detail regarding thi 
independent contribution of each variable. In this analysis, all five of the input variables provided good 
explanation, with an AUC > 0.6 for each (fig. S5). For discussion of the Maxent jacknife analysis, see 
Philips et al. 2006. 
 



 
Fig. S5 Maxent jackknife output showing AUC for each variable in a model using only that variable (blue), 
compared to a model excluding that variable (green). Strong individual-variable AUC indicates that Bio 
10 provides explanation by itself, despite low ranking in the full model.  
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