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Supplementary Figure S1: Sample Characterization of Normal Fibroblasts. A: Normal human
skin fibroblasts (Coriell depository) were obtained from individual A at age 29 and age 44, and
from individual B at age 48 and age 63. B: Fibroblast cells from the early passage (low-PDL) and
pre-senescent PDL (pre-sen) were incubated with EdU. Cell cycle progression and the fraction
of (EdU-positive) replicating cells were measured by flow cytometry. C: The level of senescence
across four fibroblast cells was quantified by flow cytometry using B-galactosidase levels .
Unstained A29 (early passage) and 4-day-old culture of A29 irradiated at 10Gy were used as
negative and positive controls. D & E: SIRT1 activity was markedly lower in samples taken from



individuals A and B at later points in chronological aging of fibroblasts (D) but not in
immortalized fibroblasts at late passage PDL (E).
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Supplementary figure S2: SIRT1 inhibition increases the prevalence of nucleolar and non-
nucleolar R-loops in non-transformed fibroblasts and cancer cells.

A & B: Quantification of R-loops using immunofluorescence in total nuclear (A) and non-
nucleolar (B) chromatin in chronological aging fibroblasts without and with chemical inhibition
of SIRT1 . C & D: Prevalence of R-loops was measured in cells harboring WT- or H3Y-SIRT1 U20S
cells. Both WT and H3Y SIRT1 were depleted using siRNA. Quantification of R-loops using
immunofluorescence as described in figure 1, total nucleolar (C) and non-nucleolar (D)
chromatin plot displaying further increase in R-loop prevalence in cells with mutated SIRT1.
siSIRT1 depletion increased R-loops in WT but not in H3Y, indicating role of SIRT1 activity in
suppression of R-loop formation. Total nuclear and non-nucleolar R-loops were measured as
described above. Unlike fibroblast cells, inhibition of SIRT1 increased the prevalence of R-loops
in non-nucleolar chromatin in cancer cells.
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Supplementary figure 3: Genomic association of R-loops with replication origins.

A: Active SIRT1 prevents excessive origin activation and R-loop formation. Left, a Venn
comparison between origins mapped from U20S cells harboring WT- or Mut-SIRT1 with NS-seq
. Right, Venn comparison between R-loops formed in U20S cells harboring WT- or Mut-SIRT1.B:
R-loops are prevalent in genomic locations containing dormant origins. Left, a Venn comparison
between baseline origins location (all active origins from WT-SIRT1 cells) with R-loops mapped
in WT and Mut-SIRT1 cells. Right, Venn comparison between genomic locations of dormant
origins, R-loops from WT and Mut-SIRT1 expressing cells. C & D: Replication origin markers
pSIRT1 and pMCM2 at dormant origins are associated with R-loop. (C) Left to right, pSIRT1
mapped from U20S cells harboring WT- and Mut-SIRT1 compared with R-loops locations (D)
Left to right, pPMCM2 mapped from U20S cells harboring WT- and Mut-SIRT1 compared with R-
loops locations. E: From left to right, line plots summarizing the fold enrichment of origin
activity (top) and R-loops formation (bottom) compared to respective controls at genes
demonstrating R-loops, baseline, and dormant origins.
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Supplementary figure 4: Chronological aging activates flexible origins.

A: Fork rates in DNA fibers from fibroblasts obtained from individual B at ages 48 and 63. and
U20S cells with active SIRT1 (WT), SIRT1 depleted (KO) or inactive SIRT1 (H3Y). B: A
representative comparison between two replicates. C-F: Scatterplots showing origin activity
over consensus origins mapped in all 4 fibroblast cells. Each dot represents a comparison
between a mapped origin between two comparisons. Diagonal black dotted line indicates no
change in origin activity while, red dotted line indicates 1.5 fold change in origin activity.
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Supplementary figure S5: In chronological aging, increased origin usage is specific to the rDNA
array on all five chromosomes.
A: The efficiency of origin replication was quantified from NS-seq of chronological age
fibroblasts, and it was represented as a violin plot specific to each chromosome.
B: Dormant origins from the rDNA region are activated by chemical inhibition of SIRT1, in
addition to chronological aging. The origin efficiency of chronological fibroblasts was quantified
from NS-seq with and without EX527, and the results were plotted as violin plots.
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Supplementary Figure S6: The transcription of ribosomal DNA is affected by the inactivity of
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SIRT1 or chronological aging. A & B: Cancer cells with either wild-type (A) or knockout (B)

SIRT1 status were synchronized in the G1/S phase using the double thymidine block technique.

They were then released to obtain phase-specific cell cycles, and RNA was isolated.

Quantitative PCR was performed to measure the transcript of 47S pre-rRNA. 55 rRNA was used

as a normalization control. C: The cell cycle profiles were determined in fibroblast cells that

were synchronized by serum starvation followed by double thymidine block. DNA content was

measured by DAPI staining. D & E: Early passage (D) and pre-senescent (E) chronological
fibroblasts were used to quantify 47S pre-rRNA transcripts following the scheme in C.



