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Figure S1. Analysis workflow and quality control for scRNAseq data from adult mouse lacrimal gland.

(A) Schematics representing the different steps for the analysis of mouse LG by scRNAseq. For each sample,
the lacrimal glands (LG) from 3 mice were harvested and dissociated into single cells. Erythrocytes and dead
cells/debris were depleted from the cell suspension before loading onto the microfluidic chip for analysis
with the Chromium system from 10X Genomics. Sequencing data were processed with CellRanger (10X
Genomics) and the resulting filtered matrix containing gene counts and cell-associated barcodes was
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analyzed using the R package Seurat. Broad cell annotations were used for analysis with the SingleCellTK
R package including celda/DecontX (to reduce ambient RNA contamination) and doublet detection
packages (DoubletFinder, scDblFinder, scds_hybrid). Cells with a high DecontX score (> 0.7) and ‘true
doublets’ (DoubletFinder/scDblFinder joint scores > 0.25) were excluded from downstream analysis.
Following high resolution clustering using decontX-corrected counts, cells associated with low quality
metrics (nGene < 200, nUMI < 500, or mtDNA > 15%) were excluded. Then, integration of samples and
clustering analysis was done using SCTransform-based normalization of DecontX-corrected counts,
following Seurat’s recommended workflow. Scheme created with BioRender (www.biorender.com) (B) This
graph shows the difference in counts between the RNA and DecontX assays (containing uncorrected and
corrected counts, respectively) for a given gene. Most corrected genes (red dots) correspond to acinar
transcripts. (C) UMAP plot for Mucl2 expression in the whole LG atlas showing ubiquitous detection of
Muci? transcript. (D) Distribution of the final number of RNA molecules (nUM]I, log scale), genes (nGene)
and percent of mitochondrial genes (% mtDNA) across samples after filtering out low quality cells and
doublets.
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Figure S2. Clustering analysis of the two months old mouse lacrimal gland.

(A-B) Data from all three samples (one female, two males, 9 mice in total) were integrated and
UMAP plot was split to compare cell composition in (A) females and (B) males. Cells were colored
based on cluster identity. (C) Table summarizing the proportion of each cluster in the LG, respective
to mouse sex. (D) Gene expression heatmap of the top-5 markers that are most conserved across
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samples for the main cell types composing the LG. Color scale corresponds to the scaled average
expression level (red: high; blue: low) and the upper bar is colored by cluster identity.
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Figure S3. Subclustering analysis of the stromal populations composing the mouse lacrimal
gland.

(A-B) Gene expression heatmaps of the top-5 markers for (A) endothelial and (B) fibroblasts
subclusters. UMAP plots on the left-hand side were cropped from the whole LG atlas to visualize
the repartition of the subclusters. Clusters are colored by identity. Color gradient on the heatmap
corresponds to the scaled average expression level (red: high; blue: low) and the upper bar is colored
by cluster identity.
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Figure S4. Subclustering analysis of the immune cell populations composing the mouse
lacrimal gland.

(A-B) Gene expression heatmaps of the top-5 markers for (A) lymphoid and (B) myeloid subclusters.
UMAP plots were cropped from the whole LG atlas to visualize the repartition of the subclusters.
Clusters are colored by identity. The color gradient on the heatmap corresponds to the scaled
average expression level (red: high; blue: low) and the upper bar is colored by cluster identity.
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Figure S5. Clustering analysis of the epithelial compartment of the mouse lacrimal gland. The
epithelial clusters identified on the whole LG atlas were subjected to a separate analysis to identify
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epithelial subclusters (see UMAP plot above). Gene expression heatmap shows the top-5 markers
for all epithelial subclusters. The color gradient on the heatmap corresponds to the scaled average
expression level (red: high; blue: low) and the upper bar is colored by cluster identity.
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Figure S6. Acinar clusters of the mouse lacrimal gland.
(A) Distribution of the number of RNA molecules (nUM], log scale), genes (nGene) and percent of
mitochondrial genes (%mtDNA) across clusters of the LG epithelium. (B) Confocal image of a 2
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months old LG frozen section immunostained for the mitochondrial marker TOM20 (green) and
heparan sulfate proteoglycan (HSPG2, red) that labels the basement membrane. Nuclei were
counterstained with DAPI. Arrowheads indicate acinar cells harboring numerous mitochondria,
while asterisks indicate acinar cells with low TOM20 staining, suggesting a reduced mitochondrial
content. (C) Volcano plot for differentially expressed genes between male acinar cluster #9 and male
acinar clusters #0,1. Only genes expressed in at least 20% cells of either of the two clusters were
considered. Dashed lines intersect the x-axis at fold-change = + 1.5 and the y-axis at p-adj = 10e-20.
Positive fold-changes indicate an upregulation in male cluster #9 compared to male clusters #0,1.
(D) The small cell subset of the Car6h cluster that differs in expression of multiple genes (red arrow)
belongs to the female sample. (E) UMAP plot for genes expressed at high levels specifically in the
female Car6hi subset of cells (red arrow). Cells are colored based on their expression level for the
corresponding gene (blue is high). Cells with no expression are shown in grey.
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Figure S7. Analysis of putative progenitors of the mouse lacrimal gland.

(A) Pathway enrichment analysis for the list of 77 genes significantly upregulated (FC > 1.5, p-adj <
0.05) in Adhlal+ cells compared to Adhlal- cells in the Ltf+ cluster. Pathway enrichment analysis
was done with Metascape (metascape.org) using default parameters and the following databases:
GeneOntology (Biological process), WikiPathways and Reactome. Significant terms were ordered
according to their enrichment p-values. (B-J) Representative confocal images of LG frozen sections
from the Sox10-iCre:TOMf reporter mouse (2 months old) injected with tamoxifen (TM) for two days
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and sacrificed one week later. Sections were stained for the epithelial marker E-cadherin (E-CAD,
white) and (B, D-G) endothelial marker PECAM-1 (green), or (H-J) SOX10 antibody. (B-G)
Epithelial cells derived from Sox10-expressing cells at the time of TM-injection are labeled by
tdTomato (TOM) and are mainly acinar (ac), myoepithelial (MEC), intercalated duct (id) cells. Less
frequently, they are also found in excretory ducts (ed). (H-J) Most cells harboring SOX10+ nuclear
staining at the time of sacrifice are MECs and cells located in intercalated duct cells and at the
junction with acini, or in the vicinity of acini lumen. Large TOM-labeled acinar cells do not show
SOX10 nuclear staining, while SOX10+ acinar cells are smaller, either isolated or close to clusters of
SOX10-/TOM+ large acinar cells.
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Figure S8. Analysis of the mouse lacrimal gland epithelium at postnatal day 4 (P4).

(A) UMAP plot of the LG at P4. Frame with dotted lines delineates the epithelial fraction that is
shown below at higher magnification to better visualize epithelial subclusters. (B) Gene expression
heatmaps of the top-5 markers for the clusters identified in the P4 LG. Clusters are colored by
identity. The color gradient on the heatmap corresponds to the scaled average expression level (red:
high; blue: low). (C) UMAP plot showing cell scores for the signature of genes involved in the G2/M
phase of the cell cycle as determined by the R package UCell. Highest scores (blue) are found in
clusters of fibroblasts and epithelial cells indicated by red arrows.
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The LG at P4 recapitulates the stromal populations present in the adult LG.

UMAP plots of the P4 LG showing the normalized expression of key genes identified in the two
months old mouse LG in the (A) fibroblastic, (B) immune and (C) vascular compartments. Cells are
colored based on their expression level for the corresponding gene (blue is high). Cells with no
expression are shown in grey. (A) Cd34 expression suggests a progenitor-like phenotype for
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mesenchymal cells, including Col15a1+ parenchymal-like and Ly6c1+ adventitial-like fibroblasts.
Mfap4 was broadly detected, suggesting it is expressed by immature fibroblasts. At this stage, Fgf10+
fibroblasts were already detected. (B) The immune compartment contained F13al+ resident
macrophages and cells of the lymphoid lineage that consisted of resident T cells (Cd3g, Cxcr6), and
possibly ILC (Gata3) as well as NK cells (Nkg7). (C) In the vascular compartment, similar to adult
LG, we also found cells positive for genes expressed by capillaries (Rgcc), arterioles (Stmn2), venular
cells (Vwf), and pericytes (Rgs5, Acta2).
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Figure S10. Analysis of the secretome of epithelial LG cells in the light of tear proteome data.

(A) Average expression level of tear components in the LG epithelium and their corresponding
signal intensities by LC-MS/MS analysis of mouse tears. Twenty-three highly abundant tear proteins
(in red) were retained for further analysis. (B-C) Expression level of tear components expressed at
higher levels by other epithelial cells than acinar clusters. Violins are colored by cluster identity. (D-
E) Spider charts summarizing the average level of tear components in (D) acinar clusters #0,1,6,7,8
of the female LG and (E) acinar clusters #0,1,6,7,8,9 of the male LG. Webs are colored according to
the cluster they correspond to. For each transcript, the maximum of the chart corresponds to the
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maximal average expression across clusters for the corresponding gene. While differences in the
secretome are obvious between males and females, acinar clusters have similar secretory profiles at
the transcriptional level within one sample type.

Description of supplementary tables

Table S1, relative to Figure 1 (separate file)

Table of the top-25 markers for the main clusters of the mouse lacrimal gland analyzed at 2 months
old. The first sheet contains the cluster markers generated using the FindAllMarkers function of
Seurat, with genes expressed in at least 25% of cells in the cluster of interest and a fold-change (FC)
> 1.25. The second sheet was generated using the FindConservedMarkers function from Seurat to
identify the markers the most conserved across samples.

Table S2, related to Figure 4 (separate file)

Table of the top-25 cluster markers for mouse LG epithelium subclustering. Marker genes were
generated using the Find AlIMarkers function of Seurat: only genes expressed in >25% of cells in the
corresponding cluster and with FC > 1.25 were considered.

Table S3, related to Figures 5 and 7B (separate file)

Differential expression analysis between epithelial clusters. Differentially expressed genes (DEGs)
were computed using the FindMarkers function in Seurat if they passed the following threshold:
expression in at least 20% of cells in either one of each cluster and log2(FC) = +1.25.

The first sheet is the comparison of acinar cluster #0 with acinar cluster #1. The second sheet
compares male acinar cluster #9 to male acinar clusters #0-1. The third sheet is the comparison of
ductal cluster #3 to ductal cluster #5.

Table S4, related to Figures 8 and S7A (separate file)

Differential expression analysis between Aldhlal+ cells and Aldhlal- cells within the Ltf+ epithelial
cluster #4. Differentially expressed genes (DEGs) were computed using the FindMarkers function in
Seurat if they passed the following threshold: expression in at least 20% of cells in either one of each
cluster and log2(FC) = +1.25. DEGs with FC > 1.5 and p-adj <0.05 (in red) were submitted to
Metascape (metascape.org) for the pathway enrichment analysis presented in Fig. S7A.

Table S5, related to Figures S9 and S8A (separate file)

Table of the top-25 cluster markers for mouse LG at postnatal day 4. Marker genes were generated
using the FindAllMarkers function of Seurat: only genes expressed in > 25% of cells in the
corresponding cluster and with FC > 1.25 were considered.

Table S6, related to Figures 10 and S10 (separate file)

Data of the tear proteome and corresponding mRNA expression in the LG epithelium as evaluated
by scRNAseq. The first sheet shows the entire data available about the tear proteome previously
published by Stopkova et al (2017), and the corresponding genes with their respective average
expression in the whole LG epithelium. Genes not detected by scRNAseq are indicated by “N/A”.
For proteomic data where two proteins are combined, the average gene expression level is the sum
of the average expression of each of these genes. The second sheet shows the average protein and
mRNA abundance regarding the selected 23 tear components highly expressed in the LG epithelium
(in each cluster and in the acinar compartment presented in Fig. 10). Differences between males and
females are shown with the FC and corresponding p-values.
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