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Supplementary Materials: Pixel super-resolution phase retrieval
for lensless on-chip microscopy via accelerated Wirtinger flow
Yunhui Gao 1 , Feng Yang 1 and Liangcai Cao 1,*

1. Step size selection

We briefly discuss the step size selection based on the convergence theorem for our
particular optical configuration, as described in the main text. The imaging model can
be divided into three linear operations, namely a phase-only modulation by the spatial
light modulator Mk ∈ Cn×n (k = 1, 2, . . . , K), a free-space propagation H ∈ Cn×n which
is implemented via circular convolution based on the angular spectrum model, and an
image cropping operation due to the finite size of the sensor area C ∈ Rm×n. Therefore, the
sampling matrix can be expressed as

Ak = CHMk. (1)

Note that we have MH
k Mk = I for all k = 1, 2, . . . , K and HHH = I, where I denotes the

identity matrix. We further assume a uniform intensity response for all subpixels, that is,
we set all the weights to one. Thus, diag(s) = diag(ST · 1) = I. One can easily verify that
the spectral radius of AH

k diag(s)Ak is upper-bounded as follows:

ρ(AH
k diag(s)Ak) = ρ(AH

k Ak) = ∥Ak∥2
2 =

(
max
x ̸=0

∥Akx∥2

∥x∥2

)2

=

(
max
x ̸=0

∥CHMkx∥2

∥x∥2

)2

u=HMkx
=======

(a)

(
max
u ̸=0

∥Cu∥2

∥u∥2

)2

≤ 1, (2)

where (a) holds because HMk is unitary. Therefore,

2K

/
K

∑
k=1

ρ
(

AH
k diag(s)Ak

)
≤ 2K/K = 2, (3)

and according to the convergence theorem, γ = 2 is proper step size.

2. Proof of Convergence
2.1. Preliminaries

In this Section, we present some intermediate results regarding matrix analysis, which
would be helpful for proving the convergence theorem below.

Lemma 1 (Properties of (semi-)definite matrices [1]). Given matrices P ∈ Cn×n, Q ∈ Cn×n,
and R ∈ Cn×n. The following holds:

(a) P ≻ Q ⇒ RHPR ≻ RHQR,

(b) P ⪰ Q ≻ 0 ⇒ Q−1 ⪰ P−1 ≻ 0.

Lemma 2 (Schur Complement [1]). Given a 2n × 2n Hermitian matrix:

P =

(
P11 P12
P21 P22

)
, (4)

where each block is of size n × n, and we have PH
11 = P11, PH

22 = P22, and PH
12 = P21. Then

P ≻ 0 ⇔ P11 ≻ 0 and P22 − P21P−1
11 P12 ≻ 0. (5)
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Lemma 3. Suppose P = (pij) ∈ Rn×n is a positive symmetric matrix. That is, PT = P, and
pij ≤ 0 for all 1 ≤ i ≤ n, 1 ≤ j ≤ n. Then for any vector v ∈ Cn,

diag(v)Pdiag(v̄) ⪰ diag
(

P|v|2
)

, (6)

where (·) denotes the complex conjugate.

Proof. Given any u = (ui) ∈ Cn, we have

uH
(

diag
(

P|v|2
)
− diag(v)Pdiag(v̄)

)
u

= uHdiag
(

P|v|2
)

u − uHdiag(v)Pdiag(v̄)u

=
n

∑
i=1

(
n

∑
j=1

pij
∣∣vj
∣∣2)|ui|2 −

n

∑
i=1

n

∑
j=1

pijvi v̄juiūj

=
n

∑
i=1

n

∑
j>i

pij

(∣∣vj
∣∣2|ui|2 − pijvi v̄juiūj − pijvjv̄iujūi + |vi|2

∣∣uj
∣∣2)

=
n

∑
i=1

n

∑
j>i

pij
∣∣v̄jui − viūj

∣∣2
≥ 0. (7)

Therefore, by definition, diag(P|v|2)− diag(v)Pdiag(v̄) is positive-semidefinite, which
completes the proof.

Lemma 4. Given a matrix P ∈ Cn×n, and a scalar ε > 0,

P
(

εI + PHP
)−1

PH ≺ I. (8)

Proof. Suppose the singular value decomposition of P is given by P = UΣVH, where
U ∈ Cn×n and V ∈ Cn×n are unitary matrices, and Σ = diag(z) is a real-valued diagonal
matrix. Then, we have

εI + PHP = εI + VΣ2VH = Vdiag
(

ε1 + z2
)

VH. (9)

That is, PHP is diagonalizable with real-valued non-negative eigenvalues z2
1, z2

2, · · · , z2
n.

εI + PHP is nonsingular and its inverse is given by(
εI + PHP

)−1
= Vdiag

(
1

ε1 + z2

)
VH. (10)

Thus, we arrive at the result:

P
(

εI + PHP
)−1

PH = Udiag
(

z2

ε1 + z2

)
UH ≺ UUH = I, (11)

which completes the proof.

2.2. Gradient and Hessian Calculation

In this Section, we derive the complex gradient and Hessian of the data-fidelity
function based on the CR-calculus [2]. The CR-calculus extends the complex derivative
to the general non-analytic functions, providing a powerful tool to analyze real-valued
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functions over complex-valued variables. We consider the fidelity term with respect to the
k-th intensity image:

Fk(x) =
1
2

∥∥∥∥√S|Akx|2 − yk

∥∥∥∥2

2
. (12)

The CR-calculus regards the complex variable x and its conjugate x̄ as independent vari-
ables. Thus, the fidelity function Fk should be interpreted as a function over the pair of
conjugate vectors x̂ = [xT, x̄T]T, and the gradient is ∇Fk = [∇xFT

k ,∇x̄FT
k ]T. Nevertheless,

to keep notations consistent, we still denote the function as Fk(x). The same applies to
other functions as well. The first-order partial derivatives of Fk with respect to x and x̄ have
been derived in [3], which are

∂Fk(x)
∂x

=
1
2

1 − yk√
S|Akx|2

T

Sdiag
(

Akx
)

Ak, (13)

∂Fk(x)
∂x̄

=
1
2

1 − yk√
S|Akx|2

T

Sdiag(Akx)Āk. (14)

It should be noted that, the above Wirtinger derivatives are not well-defined for x ∈ Zk,
where

Zk
def
=
{

x ∈ Cn : ∃i, s.t.
(

S|Akx|2
)

i
= 0

}
. (15)

Thus, we only consider x ∈ Cn\Z, where Z def
= Z1 ∪ Z2 ∪ · · · ∪ ZK. The complex Hessian is

defined as

∇2Fk(x) = Hx̂x̂ =

(
Hxx Hx̄x
Hxx̄ Hx̄x̄

)
, (16)

where the four matrices are given as follows:

Hxx =
∂

∂x

(
∂Fk(x)

∂x

)H

=
1
2

∂

∂x

AH
k diag(Akx)ST

1 − yk√
S|Akx|2


=

1
2

∂

∂x

AH
k diag(s)Akx − AH

k diag(Akx)ST yk√
S|Akx|2


=

1
2

AH
k diag(s)Ak −

1
2

AH
k diag

ST yk√
S|Akx|2

Ak

+
1
4

AH
k diag(Akx)STdiag

 yk(
S|Akx|2

) 3
2

Sdiag(Akx)Ak, (17)

Hx̄x =
∂

∂x̄

(
∂Fk(x)

∂x

)H

=
1
2

∂

∂x̄

AH
k diag(s)Akx − AH

k diag(Akx)ST yk√
S|Akx|2


=0 − 1

2
AH

k diag(Akx)ST ∂

∂x̄

 yk√
S|Akx|2


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=
1
4

AH
k diag(Akx)STdiag

 yk(
S|Akx|2

) 3
2

Sdiag(Akx)Āk, (18)

Hxx̄ =
∂

∂x

(
∂Fk(x)

∂x̄

)H

= HH
x̄x

=
1
4

AT
k diag(Akx)STdiag

 yk(
S|Akx|2

) 3
2

Sdiag(Akx)Ak, (19)

Hx̄x̄ =
∂

∂x̄

(
∂Fk(x)

∂x̄

)H

= HH
xx

=
1
2

AT
k diag(s)Āk −

1
2

AT
k diag

ST yk√
S|Akx|2

Āk

+
1
4

AT
k diag(Akx)STdiag

 yk(
S|Akx|2

) 3
2

Sdiag(Akx)Āk. (20)

In the above derivation, we let s = ST · 1.

2.3. Lipschitz Bound for the Wirtinger Gradient
In this Section, we prove that the gradient of F(x) is upper Lipschitz bounded by  a 

constant. This is a particularly useful property of the amplitude-based fidelity term,  

enabling us to use prespecified algorithm parameters while ensuring convergence. 

Lemma 5 (Lipschitz Bound). For any x ∈ Cn\Z, the Lipschitz constant L for the gradient of the data-
fidelity function ∇F(x) is bounded above:

L ≤ 1
2K

K

∑
k=1

ρ
(

AH
k diag(s)Ak

)
, (21)

where ρ(·) denotes the spectral radius.

Proof. We only need to prove that for all 1 ≤ k ≤ K, and for any x ∈ Cn\Z, the gradient of
the k-th data-fidelity term ∇Fk is Lipschitz continuous with Lipschitz constant Lk bounded
above:

Lk ≤
1
2

ρ
(

AH
k diag(s)Ak

)
, (22)

which is equivalent to proving that for any τ > (1/2)ρ
(

AH
k diag(s)Ak

)
, we have

G ≡ τI − Hcc =

(
τI − Hxx −Hx̄x
−Hxx̄ τI − Hx̄x̄

)
≻ 0. (23)

Let ε = τ − (1/2)ρ
(

AH
k diag(s)Ak

)
> 0, we have

G11 =

(
τI − 1

2
AH

k diag(s)Ak

)
+

1
2

AH
k diag

ST yk√
S|Akx|2

Ak

− 1
4

AH
k diag(Akx)STdiag

(
yk

(S|Akx|)
3
2

)
Sdiag(Akx)Ak
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≻εI +
1
4

AH
k diag(Akx)STdiag

 yk(
S|Akx|2

) 3
2

Sdiag(Akx)Ak, (24)

where the inequality holds because

τI − 1
2

AH
k diag(s)Ak ≻ εI, (25)

and

AH
k diag

ST yk√
S|Akx|2

 ⪰ AH
k diag(Akx)STdiag

 yk(
S|Akx|2

) 3
2

Sdiag(Akx)Ak. (26)

Notice that the above equation follows directly from Lemma 3 by letting v = Ax and
P = STdiag

(
yk/(S|Akx|2)3/2

)
S and using Lemma 1.a. Then, using Lemma 1.a again, we

have

G21G−1
11 G12 ⪯ G21

εI +
1
4

AH
k diag(Akx)STdiag

 yk(
S|Akx|2

) 3
2

Sdiag(Akx)Ak


−1

G12.

(27)

Let P = (1/2)diag
(

yk/(S|Akx|2)3/2
)1/2

Sdiag(Akx)Ak and use Lemma 1.b, we have

G21G−1
11 G12 ⪯ 1

4
AT

k diag(Akx)STdiag

 yk(
S|Akx|2

) 3
2


1
2

× P
(

εI + PHP
)−1

PHdiag

 yk(
S|Akx|2

) 3
2


1
2

Sdiag(Akx)Āk

≺ 1
4

AT
k diag(Akx)STdiag

 yk(
S|Akx|2

) 3
2

Sdiag(Akx)Āk

≺ 1
4

AT
k diag(Akx)STdiag

 yk(
S|Akx|2

) 3
2

Sdiag(Akx)Āk + τI − 1
2

AT
k diag(s)Āk

= G22. (28)

Therefore, according to Lemma 2, G is positive-definite. This implies that for x ∈ Cn\Zk
the Lipschitz constant Lk of ∇Fk is upper-bounded by

Lk ≤
1
2

ρ
(

AH
k diag(s)Ak

)
. (29)

Thus, for x ∈ Cn\Z the Lipschitz constant of ∇F satisfies

L =
1
K

K

∑
k=1

Lk ≤
1

2K

K

∑
k=1

ρ
(

AH
k diag(s)Ak

)
, (30)
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Figure S1. Illustration of two equivalent forward model formulations for PSR phase retrieval. (a) The
image-wise formulation adopted in the main text. (b) The element-wise formulation adopted here for
proof of convergence.

which completes the proof.

2.4. Convergence of the Basic Algorithms

In this Section, we present the proof of convergence for the global gradient descent
algorithm and the global proximal gradient algorithm with a constant step size. The main
difficulty of the phase retrieval problem lies in the non-differentiability of the data-fidelity
term at certain nonsmooth points, where the gradients are not well-defined.

For convenience of illustration, we adopt an equivalent formulation of the fidelity
term, which is expressed in a element-wise form as

F(x) =
1

2K

M

∑
i=1

(√
s̃T|Ãix|2 − yi

)2
=

M

∑
i=1

fi(x), (31)

where M = dK, Ãi ∈ Cσ×n (i = 1, 2, . . . , M) are the matrices extracted from Ak (k =
1, 2, . . . , K), and s̃ ∈ Rσ is the weight vector for the subpixels. fi is defined as

fi(x) def
=

1
2K

(√
s̃T|Ãix|2 − yi

)2
. (32)

A conceptual illustration for this formulation is shown in Fig. S1. Discontinuity of the
gradient appears at points where for some 1 ≤ i ≤ M, we have

Ãix = 0, Ãi ̸= 0, and yi ̸= 0. (33)

We refer to any x that satisfies the above condition as a nonsmooth point.

Lemma 6. Given any z ∈ Cn, the fidelity function F(x) is upper-bounded by a quadratic function
Q(x):

F(x) ≤ Q(x) def
= F(z) +∇F(z)H(x̂ − ẑ) +

L
2
∥x̂ − ẑ∥2

2. (34)

Proof. Let ∆x = x − z, then either of the two following cases occurs:
1) The line between x and z does not pass through any nonsmooth points, i.e., z +

α∆x ∈ Cn\Z, ∀α ∈ [0, 1], or x and z lie in the same nonsmooth subspace, i.e., z + α∆x ∈
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Z, ∀α ∈ [0, 1], the result is obtained directly according to the multivariate Taylor expansion
of F:

F(x) =F(z) +∇F(z)H(x̂ − ẑ) +
1
2
(x̂ − ẑ)H∇2F(u)(x̂ − ẑ)

≤F(z) +∇F(z)H(x̂ − ẑ) +
L
2
∥x̂ − ẑ∥2

2

=Q(x), (35)

where u is a convex combination of x and z.
2) The line between x and z passes through a finite number of nonsmooth points. For

simplicity, we consider the case of a single nonsmooth point indexed by j, that is, we have

s̃T|Ãj(x + α⋆∆x)|2 = 0, (36)

for some 0 < α⋆ < 1. The fidelity function can be written as a function over α for any point
that lies on the line between x ad z:

g(α) =F(x + α∆x)

=
M

∑
i=1,i ̸=j

fi(x) + f j(x)

=
M

∑
i=1,i ̸=j

fi(x) +
1

2K

(√
s̃T|Ãj(x + α∆x)|2 − yj

)2

=
M

∑
i=1,i ̸=j

fi(x) +
1

2K

(
|α − α⋆|

√
s̃T|Ãj∆x|2 − yj

)2
. (37)

According to 1), for any 0 ≤ α ≤ α⋆, g is upper-bounded by h:

h(α) = Q(x + α∆x). (38)

We now prove that for any α⋆ < α < 1, g is also upper-bounded by h, which is straightfor-
ward:

g(α) =
M

∑
i=1,i ̸=j

fi(x) +
1

2K

(
|α − α⋆|

√
s̃T|Ãj∆x|2 − yj

)2

=
M

∑
i=1,i ̸=j

fi(x) +
1

2K

(
(α − α⋆)

√
s̃T|Ãj∆x|2 − yj

)2

≤
M

∑
i=1,i ̸=j

fi(x) +
1

2K

(
(α − α⋆)

√
s̃T|Ãj∆x|2 + yj

)2

≤h(α). (39)

As a result, we have

F(x) = F(x + ∆x) = g(1) ≤ h(1) = Q(x). (40)

The above derivation can be easily extended to the case of passing through multiple
nonsmooth points. With this, we conclude that for any x ∈ Cn, we have

F(x) ≤ Q(x), (41)

which completes the proof.
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Lemma 7. The the Wirtinger flow iterates with βt ≡ 0 converge to a stationary point using a fixed
step size γ ≤ 1/L, where L is the Lipschitz constant of ∇F(x).

Proof. The proof is adapted from [4]. Recall that the non-accelerated Wirtinger flow
iteration is given by

x(t) = proxγR(x(t−1) − γ∇xF(x(t−1))). (42)

According to Lemma 6, we have that

F(x(t)) ≤ Q(x(t)) = F(x(t−1)) +∇F(x(t−1))H(x̂(t) − x̂(t−1)) +
L
2
∥x̂(t) − x̂(t−1)∥2

2. (43)

By the second prox theorem (Theorem 6.39) in [4], we have

(x̂(t−1) − γ∇F(x(t−1))− x̂(t))H(x̂(t−1) − x̂(t)) ≤ γR(x(t−1))− γR(x(t)), (44)

from which it follows that

∇F(x(t−1))H(x̂(t) − x̂(t−1)) ≤ R(x(t−1))− R(x(t))− 1
γ
∥x̂(t−1) − x̂(t)∥2

2. (45)

Combining Eqs. (43) and (45), we arrive at

J(x(t)) ≤J(x(t−1)) +

(
L
2
− 1

γ

)
∥x̂(t−1) − x̂(t)∥2

2

≤J(x(t−1))− L
2
∥x̂(t) − x̂(t−1)∥2

2. (46)

Thus, the updating step for each iteration is upper-bounded:

∥x̂(t) − x̂(t−1)∥2
2 ≤ 2

L
(J(x(t−1))− J(x(t))). (47)

By summing up T iterations, we arrive at

T

∑
t=1

∥x̂(t) − x̂(t−1)∥2
2 ≤ 2

L

T

∑
t=1

(J(x(t−1))− J(x(t)))

≤ 2
L
(J(x(0))− J⋆), (48)

where J⋆ ≥ 0 denotes the global minimum value of the objective function. This implies that

min
t∈{1,2,...,T}

∥x(t) − x(t−1)∥2
2 ≤ J(x(0))− J⋆

TL
, (49)

and
lim
t→∞

∥x(t) − x(t−1)∥2 = 0. (50)

That is, the algorithm converges to a stationary point.

Combining Lemma 5 and Lemma 7, we arrive at the main theorem below.

Theorem 1 (Convergence Theorem). The Wirtinger flow iterates with βt ≡ 0 converge to a
stationary point using a fixed step size γ that satisfies

γ ≤ 2K

/
K

∑
k=1

ρ
(

AH
k diag(s)Ak

)
. (51)
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