Supplemental Table and Figures

Table $1. Echocardiographic parameters of the animals that were studied in Sham, ShLuc and ShBNIP3 groups.

Wk3-post-AAB Wk8-HFrEF development Wk4-post-Rx Two-way ANOVA

Para- Sham ShLuc | ShBNIP3 Sham ShLuc ShBNIP3 Sham ShLuc ShBNIP3 Interac- Row Column
meters n=3 n=3 n=3 n=3 n=3 n=3 n= n=3 n=3 tion Factor Factor
HW/BW 235+ | 467 476 + NA NA NA
(mglg) 0.13 0.16* 0.51*
LVW/BW 166+ | 317+ 316 + NA NA NA
(mglg) 0.14 0.04* 0.27*
RVW/BW 041+ | 1.00+ 0.80 NA NA NA
(mglg) 003 | 0.20* 0.03+

322 + 318 + 496+ | 478+ 559+ | 503+
BW (g) 3 16 324+ 15 10 34 512 + 62 5 61 546 + 62 NS NS
IVSd 017+ | 026+ 0.28 + 019+ | 027% 0.28 + 019+ | 026 0.28 + NS NS
(cm) 0.001 0.01* 0.02* 0.01 0.01* 0.03* 0.01 0.02 0.02
LVPWd 017+ | 026+ 0.29 + 021+ | 028% 0.29 + 02+ | 028+ 0.29 + NS NS
(cm) 0.01 0.01* 0.01* 0.02 0.01* 0.02* 0.004 0.04* 0.01*
LVIDd 068+ | 058+ 0.57 + 069+ | 0.83% 0.85 + 070+ | 0.94% 0.86 + P=0.001
(cm) 0.06 0.04* 0.06* 0.03 0.03* 0.04* 0.01 0.06* 0.06*" :
LVIDs 026+ | 0.14% 0.14 % 028+ | 047% 0.49 + 027+ | 062z 0.42 +
(%) 0.04 0.03* 0.03* 0.02 0.01* 0.01* 0.002 0.07* 0.07+T
::,)’)F S 62+3 | 78+ 1* 76 + 4* 60+2 | 42+4* 42 + 4* 62+2 | 34+3* | 5245
LVEDV 472 + 3521 | gaa 4o 561+ | 901+ 901 + 557 + | 1068 + 724 £
(1) 36 45* = 71 116* 101* 36 122* 43+t
LVESV 90 + 102+ | 432+ . 104+ | 659+ 220 +
(wl) 15 40+9 37+ 10 23 63+ 400 + 36 9 o 7ot
::,)’)EF 81+2 ?94f 89 + 3* 82+2 | 52+1* 56 + 2* 81+1 | 38+2* | 71+6

Data are presented as mean * standard deviation. Statistical analysis was performed in Prism software version
9.1.0. One-way ANOVA with Benjamini, Krieger and Yekuteli correction method for multiple comparisons was
used to assess statistical significance for the following parameters: HW/BW, LVW/BW, and RVW/BW. The
remaining echocardiographic parameters were analyzed by two-way ANONA with Benjamini, Krieger and
Yekuteli correction method for multiple comparisons of cell means regardless of rows and columns to assess
for statistical significance and interaction. The rows represent the time points at which echocardiographic
parameters were obtained (wk3 post-AAB, wk8-time of HF development and treatment (Rx), and wk4-post Rx).
The columns represent the studied groups: Sham, ShLuc, and ShBNIP3. A p-value of < 0.05 was considered
significant.

Abbreviations: NA: not applicable, NS: not significant, IVSd: Interventricular septal diameter, LVPWd: left
ventricular (LV) posterior wall diameter, LVIDd: LV end-diastolic diameter, LVIDs: LV end-systolic diameter,
LVEDV: LV end-diastolic volume, LVESV: LV end-systolic volume, LVEF: LV ejection fraction, BW: body
weight, HW: heart weight, LVW: LV weight, and RVW: right ventricular weight.

*P < 0.05 vs Sham
TP < 0.05 vs ShLuc
**+*D < 0.0001
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Figure S1. Echocardiographic parameters in Sham, ShLuc and ShBNIP3 groups. LV posterior wall
thickness (LVPWd) (A), LV end-diastolic (LVEDV) and end-systolic volumes (LVESV) (B-C), and LV ejection
fraction (LVEF) (D) are shown at the time points of: concentric remodeling (week (wk)3 post-AAB), HF
development and gene delivery (wk8 post-AAB) and wk4 post treatment (Rx) (wk12 post-AAB). *P < 0.05.
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Figure S3. Visualization of the differentially expressed proteins in ShLuc vs Sham groups in LV and RV
myocardium proteomic datasets. A-B. Heat maps and PCA plots show the relative log, fold expression and
the variance in biological samples, respectively, in Sham, ShLuc and ShBNIP3 groups of the differentially
expressed proteins in ShLuc vs Sham groups in LV (left), and RV (right) shotgun proteomic datasets. C. Venn
diagrams show the number of differentially expressed proteins that were downregulated (red) or upregulated
(green) in ShLuc vs Sham in LV (left) and RV (right) shotgun proteomic datasets, and how many of these were
mitochondrial (mt)-proteins (intersection of blue or yellow with red and green diagrams). D-F. Venn diagrams
show the total number of differentially expressed proteins and mt-proteins in ShLuc vs Sham (D), and how
many of these were downregulated (E), or upregulated (F) in ShLuc vs Sham in the LV (red and green) and RV
(yellow and blue) proteomic datasets, respectively. They also show the number of the commonly identified
proteins (intersection of red with yellow) and mt-proteins (intersection of green with blue) that were differentially
expressed, downregulated or upregulated, between the LV and RV proteomic datasets.
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Figure S4. Visualization of the differentially expressed mt-proteins in ShLuc vs Sham groups and
ShBNIP3 vs ShLuc groups in the LV and RV myocardium proteomic datasets. A. Venn diagrams show
the number of differentially expressed proteins that were downregulated (red) or upregulated (yellow) in ShLuc
vs Sham in LV (left) and RV (right) shotgun proteomic datasets, and how many of these were mt-proteins
(intersection of blue with red and yellow diagrams). They also show the number of differentially expressed
proteins that were downregulated in ShBNIP3 vs ShLuc (green), and how many of these were mt-proteins
(intersection of blue with green diagrams). B-C. Heat maps and PCA plots show the relative log; fold
expression and the variance in biological samples, respectively, in Sham, ShLuc and ShBNIP3 groups of the
differentially expressed mt-proteins in ShLuc vs Sham in LV (left), and RV (right) shotgun proteomic datasets.
D-F. Venn diagrams show the total number of differentially expressed proteins and mt-proteins in ShBNIP3 vs
ShLuc (D), and how many of these were downregulated (E), or upregulated (F) in ShBNIP3 vs ShLuc in the LV
(red and green) and RV (yellow and blue) proteomic datasets, respectively. They also show the number of the
commonly identified proteins (intersection of red with yellow) and mt-proteins (intersection of green with blue)
that were differentially expressed, downregulated or upregulated, between the LV and RV proteomic datasets.
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Figure S5. Visualization of the commonly identified mt-proteins between the LV and RV proteomic
datasets. Heat maps and PCA plots show the relative log, fold expression and the variance in biological
samples, respectively, in Sham, ShLuc and ShBNIP3 groups of the commonly identified mt-proteins between
LV and RV shotgun proteomic datasets that were downregulated in ShLuc vs Sham (A-B) and those that were
upregulated in ShBNIP3 vs ShLuc (E-F). Protein-protein interaction (PPI) network of the commonly identified
mt-proteins between LV and RV shotgun proteomic datasets that were downregulated in ShLuc vs Sham (C)
and those that were upregulated in ShBNIP3 vs ShLuc (G), PPl enrichment p-value of 1.0e-16. Protein
network was generated using STRING database. Each node represents a protein, whilst edges (lines)
represent protein-protein associations based on physical and physiological interaction by confidence. The
thicker the line is, the higher is the confidence. Each color represents a cluster of proteins with specific
function. Bar graphs show some of the mt-reactome pathways that were downregulated in ShLuc vs Sham (D)
and upregulated in ShBNIP3 vs ShLuc (H) by g-value. Data are presented as percentage of total protein count
per reactome pathway.
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Figure S6. Enriched Canonical pathways and Upstream regulators in the LV and RV proteomic
datasets. Heat maps of the Canonical pathways (A) and Upstream regulators (B) that were up-
regulated/activated or down-regulated/inhibited in ShLuc vs Sham and ShBNIP3 vs ShLuc in LV and RV
proteomic datasets. The orange and blue color intensities represent the z-score-based extent of up-
regulation/activation or down-regulation/inhibition, respectively. The heat maps were generated in IPA after
‘Core Analyses’ of each of the two-group comparisons, i.e. ShLuc vs Sham and ShBNIP3 vs ShLuc, which
were then compared with each other in IPA’s ‘Comparison Analyses’ function. C. Immunoblotting show BNIP3
expression in RV myocardium of the Sham and HFrEF, ShLuc vs ShBNIP3, groups.
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Figure S7. Visualization and validation of the differentially expressed metabolites in ShLuc vs Sham in
the LV myocardium untargeted metabolomic dataset. A-B. Heat maps and PCA plots show the relative
log, fold expression and the variance in biological samples, respectively, in Sham, ShLuc and ShBNIP3 groups
of the differentially abundant metabolites in ShLuc vs Sham. C. Volcano plot shows the Log, fold change of
group means for the metabolites whose abundance increased (red) or decreased (green) in ShLuc vs Sham;
taking a cutoff -Log+ p-value of 1.3 (P < 0.05). D. Metabolic pathways that were predicted to be enhanced
(orange bar) or attenuated (blue bar) in ShLuc vs Sham; taking a cutoff -Log+o p-value of 1.3 (orange line).
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Figure S8. Visualization of the differentially expressed phosphosites in ShLuc vs Sham in the LV and
RV myocardium p-proteomic datasets. A-B. Heat maps and PCA plots show the relative log; fold
expression and the variance in biological samples, respectively, in Sham, ShLuc and ShBNIP3 groups of the
differentially expressed phosphosites in ShLuc vs Sham in LV (left), and RV (right) shotgun phosphoproteomic
datasets.
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Figure S9. Western blots show the phosphorylation of AMPK at serine 485/491 and threonine 172 residues
and downstream targets of PKA as well as the expression of the serine/threonine-protein phosphatase PP1-
alpha (PP1a) in Sham, ShLuc and ShBNIP3 groups. Bar graphs are presented as mean + SD, *P < 0.05 vs
Sham, and 'P < 0.05 vs. ShLuc.
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Figure S10. BNIP3 interactome in rat LV myocardium by BNIP3 Co-IP and mass spectrometry. A-C. Heat
maps and PCA plots show the relative log, fold expression and the variance in biological samples,
respectively, in Sham and HFrEF rat LV myocardium of the total identified BNIP3 interacting proteins (A) and
those that were differentially expressed taking a cutoff p-value of < 0.05 (B) and < 0.1 (C). D-E. Volcano plots
show the Log; fold change of group means for the identified BNIP3 interacting proteins whose relative
expression increased (red) or decreased (green) in HFrEF vs Sham rat samples taking a cutoff -Logqo p-value
of 1.3 (P <0.05) (D) or 1.0 (P < 0.1) (E). F. PPI network of the total identified BNIP3 interacting proteins in rat
LV myocardium, PPI enrichment p-value of 1.0e-16. Protein network was generated using STRING database.
Each node represents a protein, whilst edges (lines) represent protein-protein associations based on physical
and physiological interaction by confidence. The thicker the line is, the higher is the confidence. Each color
represents a cluster of proteins with specific function.
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Figure S11. BNIP3 interactome enriched Canonical Pathways, Upstream regulators, and Reactome
pathways in rat LV myocardium. A. Heat maps of the Canonical pathways that were enriched by -Log1o p-
value in BNIP3 interactome HFrEF vs Sham rat LV myocardium. B. Heat maps of the Canonical pathways and
Upstream regulators that were up-regulated/activated or down-regulated/inhibited in BNIP3 interactome HFrEF
vs Sham rat LV myocardium. The orange and blue color intensities represent the z-score-based extent of up-
regulation/activation or down-regulation/inhibition, respectively. In both A and B, the heat maps were generated
in IPA after ‘Core Analyses’ of the two-group comparison (HFrEF vs Sham) taking a cutoff p-value of < 0.05 vs
< 0.1, which were then compared with each other in IPA’s ‘Comparison Analyses’ function. C-E. BNIP3
interactome enriched reactome pathways by g-value for the total identified BNIP3 interacting proteins in rat LV
myocardium (C) and those that were differentially downregulated (D) or upregulated (E) in HFrEF vs Sham.
Data are presented as percentage of total protein count per reactome pathway.
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Figure S12. Visualization of BNIP3 interactome in Human HFrEF LV myocardium. A. Heat map show the
relative log, fold expression of the total identified BNIP3 interacting proteins for each of the human HFrEF LV
myocardium biological sample. B. BNIP3 interactome enriched reactome pathways by g-value for the total
identified BNIP3 interacting proteins in human HFrEF LV myocardium. Data are presented as percentage of
total protein count per reactome pathway. C. PPI network of the total identified BNIP3 interacting proteins in
human HFrEF LV myocardium, PPl enrichment p-value of 1.0e-16. Protein network was generated using
STRING database. Each node represents a protein, whilst edges (lines) represent protein-protein associations
based on physical and physiological interaction by confidence. The thicker the line is, the higher is the
confidence. Each color represents a cluster of proteins with specific function.
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Figure S13. Visualization of the commonly identified BNIP3 interacting proteins in human and rat LV
myocardium. A. Heat maps and PCA plots show the relative log, fold expression and the variance in




biological samples, respectively, of the commonly identified BNIP3 interacting proteins that were differentially
expressed in HFrEF vs Sham with a cutoff p-value of < 0.1. B. PPI network of the commonly identified BNIP3
interacting proteins in rat and human HFrEF LV myocardium, PPl enrichment p-value of 1.0e-16. Protein
network was generated using STRING database. Each node represents a protein, whilst edges (lines)
represent protein-protein associations based on physical and physiological interaction by confidence. The
thicker the line is, the higher is the confidence. Each color represents a cluster of proteins with specific
function. Highest interaction was between BNIP3 and VDAC1. Black and green arrowheads point at BNIP3
and VDAC1 nodes, respectively.
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Figure S14. Enriched canonical pathways and Upstream regulators of the commonly identified BNIP3
interacting proteins in rat and human LV myocardium. Heat maps of the Canonical pathways that were
enriched by -Log+o p-value (A) and Upstream regulators (B) that were up-regulated/activated or down-
regulated/inhibited in HFrEF vs Sham of the commonly identified BNIP3 interacting proteins between rat and
human LV myocardium. The orange and blue color intensities represent the z-score-based extent of up-
regulation/activation or down-regulation/inhibition, respectively. Heat maps were generated in IPA after ‘Core
Analyses’ of the two-group comparison (HFrEF vs Sham) taking a cutoff p-value of < 0.05 vs < 0.1, which were
then compared with each other in IPA’s ‘Comparison Analyses’ function. C. BNIP3 interactome enriched
reactome pathways by g-value for the commonly identified BNIP3 interacting proteins between human and rat
LV myocardium. Data are presented as percentage of total protein count per reactome pathway.



