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Figure S1. Protein domains of (a) NtPNI (pollen extracellular nuclease I, plant nuclease I, GenBank
AC XP_016459651.1), (b) NbTFIIIA-7ZF [1], and (c) NtTFIIIA. Domains were predicted and visualized
using InterProScan [2] and Geneious Prime 2020.04 software, respectively.
(a) PNI is a potential member of pollen “degradation complex” supplementing our analyzes per-
formed previously [1].
(b) NbTFIIIA was amplified from N. benthamiana plants infected with lethal PSTVd strain AS1 [3].
This authentic sequence was cloned into vector pJM14 [1] and transformed in this study to N. tabacum.
NtTFIIIA-9ZF homologue was derived from N. tabacum genomic sequences using BLAST [4].
(c) NtTFIIIA-9ZF cDNA (top) and the corresponding nucleotide fragment covering NtTFIIIA-7ZF
(bottom) cDNAs were used as targets for mapping of high identity NGS reads from AFCVd trans-
formed/infected tobacco using Geneious Prime® 2022.0.1 (see Material and Methods). The total
number of reads per sequenced transcriptome and the density of corresponding reads per bp of
cDNA fragment (R/bp) are indicated above the aa sequence schemes.
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Figure S2. Schematic representation of the plant vector pJM14 with integrated NbTFIIIA-7Z. (a) The
NbTFIII-7Z cDNA (864 bp) was integrated into pJM14 [1] using the unique restriction sites XhoI and
KpnI within the sequence of the expression cassette (b). The scheme in (b) is not to scale. The vector
provides plant resistance to kanamycin.
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Figure S3. Relative levels of TFIIIA and NPTII mRNAs in tobacco plants transformed either with
vector pJM14 containing NbTFIIIA-7ZF (a) or with infectious pFAST vectors (see Figure S5) bearing
dimeric AFCVd (AFT) or CBCVd (CBT) cDNAs (b).
(a) Level of endogenous TFIIIA in untransformed control (C) is shown, while the level in transfor-
mants (7ZF) includes endogenous TFIIIA together with transgene-expressed NbTFIIIA-7ZF (orange
columns). For transgenic plants 7ZF also level of mRNA for kanamycin resistence gene (NPTII) is
shown (blue column). No specific NPTII signals were observed for control tobacco plants.
(b) Levels of endogenous TFIIIA are shown for control (C) and transgenic AFT and CBT variants
(orange columns). Levels of NPTII mRNA in transgenotes are shown by the blue columns. No specific
NPTII signal was detectable in controls. Each column represents the mean± SD of two replicates of
each PCR reaction. The level of AGO in controls was set to 100%.
Lines with asterisks indicate statistical differences between connected values (*, statistically non-
significant differences at p > 0.05; **, statistically significant differences at p < 0.05; ***, statistically
significant differences at p < 0.01).
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Figure S4. Relative mRNA levels of pollen extracellular nuclease (PNI) mRNA in various stages of
tobacco anthers and pollen development. For comparison, PNI levels are shown in young leaves (L),
in whole anthers of developmental stages 3 (A3) and 5 (A5), respectively, in isolated immature pollen
of stages 3 (P3) and 5 (P5), respectively, in mature pollen (MP), and in 6 hours germinating tobacco
pollen (pollen tubes, GP). The levels of PNI in GP was taken as 100%. The asterisk indicates very low
level of PNI already in stage P5. In the right part of the graph, comparative analysis of the levels of
other factors that could participate in viroid degradation in pollen [1] are shown at critical stage P5 of
pollen development: NtTudor S-like nuclease (TSN), NtDCL (DCL), and NtAGO5 (AGO). Results
of qPCR, performed as described in Materials and Methods, were normalized to actin. The mean
value± SD of two replicates of each PCR reaction is shown. Lines with asterisks indicate statistically
evaluated differences between connected PNI values (*, statistically non-significant differences at
p > 0.05; **, statistically significant differences at p < 0.05; ***, statistically significant differences at
p < 0.01).
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Figure S5. Plant vector cassettes used for transformation of N. tabacum with AFCVd (a) and CBCVd (b)
infectious dimeric (++) cDNAs. Plant vector pFAST bearing late pollen-specific promoter pLAT52
described previously [1] was used for transformation. Infectious (++) dimers of AFCVd and CBCVd
were integrated into unique KpnI and SpeI restriction sites, respectively, downstream of pLAT52
promoter using specific adapters [1]. The vectors were transformed to Agrobacterium LBA4404 and
used for tobacco transformation. The schemes are not to scale.
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Table S1. Primers used for strand-specific RT-qPCR and quantification of mRNA levels by RT-qPCR.

No Designation Sequence 5’→3’ Purpose Ref.

NtTFIIIA-9ZF, NtTFIIIA-7ZF, NbTFIIIA-7Z

1 NtTFIIIA_F2 GACATCTCTTGCAGCACCAAG RT-qPCR
2 NtTFIIIA_R2 AACAAAGTGCCTCCATCGTC

AFCVd

3 AFCVdRTPL TCGTCGACGACGAGTCACCAGGTG cDNA synthesis – reverse transcription [5]
4 AFCVdRTMI GTGACTCGTCGTCGACGAAGGGTC [5]
5 AFCVd PCR_FOR CCGGTCGTGGATACCTAGGA RT-qPCR [5]
6 AFCVd PCR_REV ACGCGGCCTTCGGTGTG [5]

CBCVd

7 CVdRTPL AAGCCTGGGAGGAACAACCCAAGAG cDNA synthesis – reverse transcription [5]
8 CVdRTMI GGATCCCCGGGGAAATCTCTTCAG [5]
9 CVd PCR_FOR TCACTGGCGTCCAGCACC RT-qPCR [5]

10 CVd PCR_REV AGGAAGAAGCGACGATCGG [5]

NtPNI

11 NtPNI-F AACGGCGACTTATCGGCACTC RT-qPCR
12 NtPNI-R TGGATTGCACCAGCCACACAC

NtDICER-like homologues

13 pollenDcl-F GAGTGCATGAAACATATGATACAG RT-qPCR [1]
14 pollenDcl-R GAGAACTCTCAAGAAGCMTTGA [1]

NtAGO5

15 1AGO5F CAGCCTTCATCATCACAACG RT-qPCR [1]
16 1AGO5R CGTCCAACAGTTCCGTATCC [1]

NtTUDOR S1-like nuclease (NtTSN)

17 TunucF GTGGATGAGCCATTTGCATG RT-qPCR [1]
18 TunucR GATGCCTCAGAAGCACCAGG [1]

Senescence regulating factor NtNAC080

19 NtNAC_for TAACCAAATAGTCCCAGTTCAGAGC RT-qPCR [6]
20 NtNAC_rev GTAACTCCAAAGGCAATCAAGACTC [6]

Senescence marker NtCP1

21 NtCP1_for CAGTGGCTAATCAACCTGTTTCGG RT-qPCR [6]
22 NtCP1_rev ACACCACTTGAATAGAACTGGAAATCG [6]

NtACTIN2

23 NtActin_For ACCTCTATGGCAACATTGTGCTCAG RT-qPCR [6]
24 NtActin_Rev CTGGGAGCCAAAGCGGTGATT [6]

NtACTIN

25 ACT-F1 TTCTGTTCCAACCATCAATGA RT-qPCR [1]
26 ACT-R1 GTACCACCACTGAGGACAATGT [1]

7SL RNA

27 primer-α TGTAACCCAAGTGGGGG Reverse transcription and RT-qPCR [7]
28 anti-β GCACCGGCCCGTTATCC RT-qPCR [7]
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