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Murine pulmonary artery smooth muscle cells (mpaSMCs) were cultured and SMC markers (aSMA,
SM-MHC, calponin) were detected by immunofluorescence-based techniques (aSMA - red
fluorescence, top image, scale bar: 100 pm) or immunodetection in lysates after capillary

electrophoresis (lower panel).
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Capillary electrophoresis-based immunodetection of NFATS5 in lysates of maoSMCs treated with AACRE
-/ 1/fl

adenovirus to genetically ablate Nfat5 (Nfat5/) or AdPl adenovirus as a control (NfatSf/f). VCP (valosin

containing protein) served as loading reference. The right panel shows the corresponding signal peaks

detected by the analysis software.
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(A) Immunofluorescence-based mitochondrial ROS detection in maoSMCs (red fluorescence) and its
software-supported evaluation in a region of interest (ROI, green color, right image, scale bar: 50 um).
(B) Detection of mitochondria by the fluorophore MitoTracker™ Green FM in maoSMCs treated with
AdCRE adenovirus to knockout Nfat5 or AdPl adenovirus as a control and exposed to normoxia/hypoxia
for 24 h. The graph summarizes the data of one experiment performed in triplicate. No significant
changes were observed (scale bar: 50 um).
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Vibratome sections of lungs from hypoxia/normoxia-exposed Nfat5ﬂ/ﬂ and NfatS{SMC)_/_ mice were
processed to detect aSMA (green) and NFAT5 (red) by immunofluorescence-based techniques
(directly labelled antibodies were utilized only) and image stacks were generated by confocal
microscopy (scale bars: 200 um, note that NFATS5 localized in the nuclei cannot be detected in formalin-
fixed vibratome sections). In normoxic lungs, NFAT5 was preferentially detectable in immune cells

(arrows) but not in vascular smooth muscle cells (arrowheads). NFAT5-associated |IF was detectable in

1/fl -/-
aSMA-positive cells in hypoxia-exposed Nfat5f/f but not NfatE(SMC)/ lungs.
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(A,B) Principal component analyses of RNA samples of lungs from Nfat5ff mice exposed to

normoxia/hypoxia for 7 d (A, n=4) and from NfatS(SMC)-/- and Nfat5ﬂ/ﬂ mice exposed to hypoxia for 7 d
(B, n=3). The hierarchical clustering analysis indicated a homogenous correlation of the clustering of
samples from individual experimental groups. (C) gPCR-based comparison of the expression of Nfat5

(transcriptional target of NFAT5) in lungs from NfatS(SMC)'/'
1/fl
d (***p<0.001 vs. Nfat5f/f mice, n=3).

/1l
and Nfat5f/f mice exposed to hypoxia for 7
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Gene name Category FR (log2) - NfatSﬂ/ﬂ: Hyp. vs. Norm. p-value JFR (log2)- Hyp.: Nfat5 (M- ys, Nfat5ﬂ/ﬂ p-value
Nfat5 Transcription factor n.s. >0.05 -1.06 <0.01
Pdgfb SMC biology 0.71 E:] <0.01 n.s. >0.05
Pdgfrb SMC biology n.s. >0.05 n.s. >0.05
Myh2 SMC biology n.s. >0.05 n.s. >0.05
Myh11 (SMMHC)|SMC biology n.s. >0.05 n.s. >0.05
Myl4 SMC biology -0.64 <0.01 n.s. >0.05
Myl7 SMC biology -1.05 <0.001 n.s. >0.05
Vim SMC biology 0.45 <0.05 n.s. >0.05
Tagln (SM22) SMC biology 0.62 <0.05 n.s. >0.05
Acta2 (aSMA)  |SMC biology 0.71 <0.05 n.s. >0.05
Cacnalc SMC biology 0.84 <0.01 -0.77 <0.01
Ednra SMC biology n.s. >0.05 -0.44 <0.01
Plcb1 SMC biology n.s. >0.05 -0.70 <0.01
Prkg1 SMC biology -0.71 <0.05 ||-0.71 <0.05
Rock1 SMC biology n.s. >0.05 -0.50 <0.05
Rock2 SMC biology n.s. >0.05 -0.69 <0.05

Expression of individual genes associated with the SMC phenotype in lungs of Nfat " and NfatS(SMC)_/_

mice exposed to normoxia/hypoxia for 7 days. The left panel lists significantly regulated genes
(downregulated: green, upregulated: red, FR — fold regulation (log2-values)) when comparing hypoxia
(7d)/Nfat5ﬂ/ﬂ and the corresponding normoxia/NfatSﬂ/ﬂ group (left panel, n=4, n.s. — not significant).

The right panel shows the change in gene expression comparing hypoxia-exposed (7 d) Nfat5(5MC)_/_ and

NfatSﬂ/ﬂ mice (n=3).
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C)-/- .
and Nfat5f mice were

processed to detect EAU (green fluorescence, labels cells with DNA synthesis during the last 2 hours of
the experiment) and the SMC marker aSMA (red fluorescence) by immunofluorescence-based
techniques (scale bars: 100 um). Images stacks of confocal images were morphometrically evaluated

Vibratome sections of lungs from hypoxia/normoxia-exposed NfatS{SM

to determine the number of EdU+/0cSMA+ cells (arrows) per cubic mm in arterial segments with a
diameter <30 um (n.s.- not significant, ***p<0.001 as indicated, n=5-6).
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Glycolysis was assessed by analysis of the extracellular acidification rate (ECAR) using a Seahorse XF
analyzer. mpaSMCs were treated with adeno-associated virus to overexpress CRE recombinase (Nfat5

/_) or GFP (NfatSﬂ/ﬂ) and exposed to normoxia/hypoxia for 24 h prior to analysis. (A) ECAR was
determined while treating the cells with glucose (Gluc.), oligomycin (OM) and 2-desoxy-D-glucose (2-
DG) to analyze (B) baseline glycolysis and glycolytic capacity. Three replicates were performed for each
sample (***p<0.001 as indicated). ECAR was normalized to the total cellular protein per sample.
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Mitochondrial ROS production was assessed by determining the fluorescence intensity of ROS-
sensitive mitochondrion-selective probes (MitoTracker™ Red CM-H2Xros and MitoSOX Red) in

1/fl /Al -
mpaSMCs from NfatSf/f mice, treated with control (Nfat5f f) and Cre recombinase-transducing (Nfat5

/_) adenoviral vectors and exposed to hypoxia for 24 h (*p<0.05 as indicated, the results of 19-20
randomly selected regions of interest (ROI) from one experiment are shown, scale bar: 50 um).
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Mitochondrial ROS production was assessed by recording the fluorescence intensity of a ROS-sensitive
mitochondrion-selective probe (MitoTracker™ Red CM-H2Xros) in mpaSMCs, treated with adenoviral

vectors (AdCRE) to genetically ablate Nfat5 (Nfat5_/_) or AdPI vectors as control (NfatSﬂ/ﬂ) and exposed

to hypoxia for 24 h. Hypoxia-exposed (24 h) Nfat5_/_ mpaSMCs were treated with the mitochondrion-
specific ROS scavenger MitoTEMPO (20 uM) for 1 h before fluorescence recording (*p<0.05 as
indicated, the results of one experiment performed in pentaplicate are shown, scale bar: 50 um).
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(A) Echocardiographic analysis of right venticular pulmonary acceleration time (PAT) and ejection time
(ET). (B) Representative (Doppler) echocardiographic recordings of the pulmonary artery ejection in

NfatSﬂ/ﬂ and NfatS{SMC)_/_ mice exposed to normoxia/hypoxia for 21 d. (C and D) Graphs summarizing
individual PAT and ET values from mice (*p<0.05, **p<0.01 as indicated, n.s. — not significant, n=5).
Data is shown as mean +SD.
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(A-C) Echocardiographic analysis of left venticular (LV) structural and functional parameters of Nfat &

and NfatS(SMC)-/- mice exposed to normoxia/hypoxia for 21 d. No significant differences were observed
(n=5). Data is shown as mean +SEM.
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(A-C) Echocardiographic data of right venticular (RV) area during systole (A) and diastole (B) as well as

(C) RV fractional area change (FAC) in Nfat5ﬂ/ﬂ and NfatS{SM

C)-/

" mice exposed to normoxia/hypoxia for

21 d (*p<0.05,**p<0.01, ***p<0.001 as indicated, n.s. — not significant, n=5). Data is shown as mean

*SD.
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SMC coverage of arterial blood vessels with different caliber (extension of Figure 4). Vibratome
. . . SMC)-/- /[ -
sections of lungs from hypoxia/normoxia-exposed Nfat5( Mo and Nfat5ff mice were processed to

detect CD31 (green) and aSMA (red) by immunofluorescence-based techniques (scale bars: 100 um).
Image stacks of confocal images were morphometrically evaluated to determine the coverage of
arterial segments with different caliber comprising the following groups: 7-10 um, 11-15 um, 16-20
pm and 21-25 um (n.s. — not significant, *p<0.05, **p<0.01, ***p<0.001 as indicated, n=5-10).



