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Text S1. Persulfate detection methods 

The persulfate concentration was determined by a modified spectrophotometric 

method. 0.5 M potassium iodide with bicarbonate buffer (NaHCO3, 0.05 M) was 

prepared, and then 0.3 mL filtered sample was mixed with the above iodide solution 

(4.7 mL). Shaking well, and after 20 min reaction, the water sample was detected by 

spectrophotometer (UV-Vis) at λ = 352 nm. 

Text S2. Characterization of MnO2 particles 

An X-ray powder diffractometer (XRD, Rigaku XtaLAB Synergy-S) was applied to 

determine the crystallographic structure of MnO2 particles before and after treatment 

in MnO2/UV/PS process. The surface morphology of MnO2 particles before and after 

treatment in MnO2/UV/PS process was measured by the scanning electron microscope 

(SEM, Quanta 400 MLA) equipped with energy-dispersive X-ray spectroscopy 

(EDS).  

Text S3. BPA derivatization and GC-MS analysis methods 

We prepared six identical mixtures, each containing: 200 mL of water containing 

30 mg/L BPA, 1 mM of PS, and 0.25 g/L MnO2. Samples (30 mL) of each were taken 

from different flasks after 0, 5, 15, 30, 60, 90, and 120 min of UV treatment. Each 

sample was transferred into a separatory funnel, and 15 mL methylene chloride was 

immediately added to extract the BPA and its degradation intermediates. After 

agitation, the mixture was allowed to settle for 30 min, and the underlying organic 

phase was separated from the aqueous phase. A second 15 mL aliquot of methylene 

chloride was then used to recover any organic matter remaining in the separatory 
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funnel. The extract was dehydrated with anhydrous sodium sulfate, filtered, and 

concentrated to near dryness on a vacuum rotary evaporator. The residue was 

redissolved in 1 mL of toluene and transferred to a 1.5 mL brown vial, from which a 

100 µL aliquot was analyzed directly, and the remaining sample was derivatized 

before analysis. For derivatization, toluene was first removed from the remaining 

sample by evaporation to dryness under a gentle nitrogen stream, then 150 µL of 

BSTFA+TMCS were added to silylate the polar degradation products in the residue. 

The silylation reaction was conducted by heating the mixture in a water bath for 2 h at 

60 ℃. Toluene (350 µL) was added to the vial to dissolve the silylated products. Both 

the silylated and non-silylated aliquots were analyzed using gas chromatography. 

Chromatographic separation of analytes was carried out using a DB-5MS UI fused 

silica capillary column (30 m × 0.25 mm × 0.25 µm). The inlet and detector 

temperatures of the gas chromatograph were set to 260 and 320 °C, respectively. The 

oven temperature was initially set to 80 °C and held for 3 min, then increased to 

300 °C at 3 °C/min and held for 30 min. Helium was used as the carrier gas at the 

flow rate of 1.0 mL/min. The sample (2 µL) was injected in the pulsed splitless mode. 

The temperatures of the transfer line, ion source, and mass spectrometry detector were 

280, 230, and 150 °C, respectively. Qualitative analysis was performed in the electron 

impact mode at 70 eV using the full scan mode in the m/z range of 40–1000 [1, 2]. 
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Figure S1. PS residual in MnO2/PS, UV/PS, and MnO2/UV/PS processes  

 

Figure S2. Effects of radical inhibitors on BPA concentrations over 30 min for UV/MnO2. Initial 

conditions: [BPA] = 30 mg/L, Ph = 6.5, [PS] = 1 mM, [MnO2] = 0.25 g/L. When inhibitor is used, 

initial [MeOH] = 1 M or [TBA] = 1 M or [FFA] = 5 mM. 
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Figure S3. XRD of MnO2 before (a) and after (b) 2 h treatment in MnO2/UV/PS process 

 

 

Figure S4. SEM image and EDS analysis of MnO2 before (a, b) and after (c, d) 2 h treatment in 
MnO2/UV/PS process 
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Figure S5. Proposed derivatized intermediates and their possible ion fragments 



21 
 

 
Figure S6. Intermediates residue in MnO2/UV/PS process 

 

Figure S7. Schematic diagram of experimental device 
Table S1. Parameters of BPA degradation following the pseudo-first-order kinetics with and without 
quenching (reaction time: 30 min; D: degradation efficiency) 

Processes Scavengers k (min-1) R2 D (%) 

 

 

UV/MnO2 

No quenching 0.0132 0.9724 34.0 

MeOH (1 M) 0.0061 0.9026 17.7 

TBA (1 M) 0.0051 0.9685 15.2 

FFA (5 mM) 0.0044 0.9732 13.1 

 

 

MnO2/PS 

No quenching 0.0333 0.946 64.9 

MeOH (1 M) 0.0164 0.9631 39.6 

TBA (1 M) 0.0268 0.9934 55.0 

FFA (5 mM) 0.0313 0.9321 62.2 

 

 

UV/PS 

No quenching 0.1178 0.9622 97.5 

MeOH (1 M) 0.0337 0.9723 65.7 

TBA (1 M) 0.0297 0.963 61.2 
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FFA (5 mM) 0.0109 0.9701 28.4 

 

 

MnO2/UV/PS 

No quenching 0.2196 0.9471 99.3 

MeOH (1 M) 0.0469 0.9841 75.9 

TBA (1 M) 0.0631 0.9716 86.2 

FFA (5 mM) 0.0445 0.9547 74.1 
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Table S2. Degradation products of BPA under the MnO2/UV/PS process identified using GC-MS 

Retention 

time (min) 

Molecular 

weight 

Proposed structure No. References 
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