
Supplementary Materials 

1. Patients

Supplementary Table S1. Patient Characteristics of the Cohorts. 

 Note. – The age of the patients is the mean value ± standard deviation, the age range is in 

parentheses. 

Site Cohort 
Investigation 

period 

Number of 

patients 

Sex 

[f / m] 

Age 

[years] 

IDHwt 

gliomas 

IDHmut 

gliomas 

St. Pölten Training 

January 2016 

to January 

2023 

166 81 / 85 
58.1 ± 15.2 

(19 – 89) 
123 43 

St. Pölten 
Independent 

Internal Testing 

February 2023 

to May 2023 
16 8 / 8 

51.9 ± 18.6 

(19 –76) 
12 4 

Erlangen 

Independent 

External 

Testing 

June 2016 to 

October 2018 
33 7 / 26 

54.7 ± 15.3 

(27 –78) 
21 12 



2. MRI data Acquisition

Supplementary Table S2. Sequence parameters of the MRI study protocols at the 

University Clinic St. Pölten and the Friedrich-Alexander University Erlangen-Nürnberg. 

Note. FLAIR, fluid-attenuated inversion-recovery; CE T1w, contrast-enhanced T1-weoghted 

MRI; DWI, diffusion-weighted imaging; GE-DSC, gradient echo dynamic susceptibility 

contrast perfusion MRI; SE-DSC, spin echo dynamic susceptibility contrast perfusion MRI; 

GESE-DSC, hybrid single-shot gradient-echo spin-echo dynamic susceptibility contrast 

perfusion MRI. *Flip angle means the angle of excitation. Refocusing angles were 180° for all 

sequences with a SE scheme, i.e. FLAIR, DWI, SE-DSC, and T2 mapping. 

Sequence Site 
In-plane 

resolution 

Slice 
thickness 

[mm] 

Number 
of 

slices 

TR 
[ms] 

TE 
[ms] 

Flip 
angle* 

[°] 
other 

FLAIR St. Pölten 0.45 × 0.45 3 48 5000 460 120 TI = 1800 ms 

Erlangen 0.45 × 0.45 4.5 24 10000 83 150 TI = 1600 ms 

CE T1w St. Pölten 1.0 × 1.0 1 50 2100 2.3 12 

Erlangen 0.9 × 0.9 4.8 12 300 2.4 70 

DWI St. Pölten 1.2 × 1.2 4 29 5300 98 90 
b = 0 and 1000 

s/mm2 

Erlangen 1.8 × 1.8 4 8 1500 81 90 
b = 0 and 1000 

s/mm2 

GE-DSC St. Pölten 1.8 × 1.8 4 29 1740 22 90 60 dynamic volumes 

SE-DSC St. Pölten 1.8 × 1.8 4 29 1740 33 90 60 dynamic volumes 

GESE-DSC Erlangen 1.8 × 1.8 4 8 1380 
GE: 16; 
SE: 89 

90 80 dynamic volumes 

T2 mapping St. Pölten 1.8 × 1.8 4 29 3260 13 – 104 90 8 echoes 

Erlangen 1.8 × 1.8 4 8 1610 12 – 96 90 8 echoes 

T2* mapping St. Pölten 1.8 × 1.8 4 29 1210 5 – 40 90 8 echoes 

Erlangen 1.8 × 1.8 4 8 658 5 – 40 90 8 echoes 



Supplementary Figure S1: The overall study pipeline. 

CE T1w = contrast enhanced T1-weighted; FLAIR = fluid-attenuated inversion-recovery; DWI 

= diffusion-weighted imaging; GE-DSC = gradient echo dynamic susceptibility contrast 

perfusion MRI; SE-DSC = spin echo dynamic susceptibility contrast perfusion MRI; ADC = 

apparent diffusion coefficient; CBV = cerebral blood volume; OEF = oxygen extraction 

fraction; CMRO2 = cerebral metabolic rate of oxygen; capiPO2 = capillary oxygen tension; 

mitoPO2 = mitochondrial oxygen tension; μCBV = microvascular cerebral blood volume; MVD 

= microvessel density; VSI = vessel size index; MTI = microvessel type indicator; CNN = 

Convolutional Neural Networks; LSTM = Long short-term memory. 



3. Radiomic Feature Extraction

The data for clinical MRI (CE T1w FLAIR, ADC and CBV), MRI-based oxygen metabolism 

(OEF, CMRO2, capiPO2, and mitoPO2), MRI-based vascular architecture (µCBV, MVD, VSI), 

and MRI-based neovascularization activity (MTI) of a patient were loaded into the open-

source software platform 3D Slicer (v. 4.11) and aligned geometrically. Segmentation of the 

tumor volume was performed on CE T1w MRI data defined as the contrast-enhancing areas. 

Segmentation of the peritumoral edema was performed on FLAIR data defined as 

hyperintense areas excluding the contrast-enhancing or necrotic portions. The regions of 

interest (ROIs) were manually drawn on all axial slices showing the features for 3D 

segmentation by a MR physicist (A.S., with 22 years of experience in neuro-oncological 

imaging) and confirmed by another neurosurgeon (F.M., with 16 years of experience). 

Disagreements were resolved by discussion to consensus. Both readers were blinded to the 

histopathological diagnosis of the tumor. 

Grey-level intensity values of the cMRI were normalized by subtracting the mean intensity 

and dividing by the standard deviation with an expected resulting range [-3, 3], a mean of 0 

and standard deviation of 1 in the normalized image. This procedure is also known as z-

score normalization [1,2]. The grey-level discretization was done [3] with a bin width value of 

0.1 resulting in histograms with approximately 60 bins. Biomarker maps for both clinical MRI 

and physio-metabolic MRI represented quantitative imaging data with a range of 

physiological reasonable values. Individually adapted thresholds were applied to the 

biomarker maps in order to remove non-physiological values due to imaging artefacts (e.g. 

motion or susceptibility artefacts). Biomarker value discretization was performed with 

adapted bin width values in order to obtain histograms with 60 – 67 bins. Supplementary 

Table 3 summarizes the value ranges and bin sizes used for the biomarker maps. Next, MRI 

data were resampled into a uniform voxel size of 1 × 1 × 1 mm3 across all patients [3]. 

Supplementary Table S3. Value ranges, bin sizes, and bin numbers for discretization 

of biomarker maps. 

Abbreviations. ADC = apparent diffusion coefficient; CBV = cerebral blood volume; μCBV = 

microvascular cerebral blood volume; MVD = microvessel density; VSI = vessel size index; 

MTI = microvessel type indicator; OEF = oxygen extraction fraction; CMRO2 = cerebral 

metabolic rate of oxygen; and xPO2 = cpaiPO2 and mitoPO2 = capillary and mitochondrial 

oxygen tension, respectively. 

ADC CBV OEF CMRO2 xPO2 µCBV MVD VSI MTI 

range [0,3] [0,100] [0,100] [0,1000] [0,200] [0.30] [0,2000] [0,500] 
[-1000, 

1000] 

unit mm2/s % % 
µmol/ 

100g×min 
mmHg % mm-2 µm s-2/5

bin size 0.05 1.5 1.5 15 3 0.5 30 8 30 

bins 60 67 67 67 67 60 67 63 67 



Radiomic features were extracted with the built-in package SlicerRadiomics implemented in 

the 3D Slicer platform based on the Python package PyRadiomics [4]. Procedures and 

features were in accordance with the Imaging Biomarker Standardization Initiative (IBSI) [5]. 

The following features were calculated: 

• 14 shape features, which represent the three-dimensional size and shape of the

segmented volume of interest (VOI, i.e. contrast-enhancing tumor and peritumoral edema).

These features included elongation, flatness, least and major axis length, maximum 2D

diameter column, maximum 2D diameter row, maximum 2D diameter slice, maximum 3D

diameter, mesh volume, minor axis length, sphericity, surface area, surface volume ratio, and

voxel volume.

• 18 first-order features, which represent the distribution of gray values within an image,

were calculated from the histogram of voxel intensities. These features included 10th and

90th percentile, energy, entropy, interquartile range, kurtosis, maximum, mean absolute

deviation, mean, median, minimum, range, robust mean absolute deviation, root mean

squared, skewness, total energy, uniformity, and variance.

• 75 texture features, which describe relationships between neighboring voxels with

similar or dissimilar values. These features included the following 6 subcategories: (i) 24

gray-level co-occurrence matrix (GLCM) features characterizing how often pairs of voxels

with specific intensity levels and spatial relationship occur in an image [6]; (ii) 14 gray-level

dependence matrix (GLDM) features representing the dependency of connected voxels to a

center voxel [7]; (iii) 16 gray-level run-length matrix (GLRLM) features evaluating the length

of consecutive pixels with the same gray level [8]; (iv) 16 gray-level size zone matrix

(GLSZM) features quantifying the number of connected voxels that share the same intensity

value [9]; and (v) five neighboring gray-tone difference matrix (NGTDM) features assessing

differences between pixel values and neighbor average gray value [10].



Supplementary Table S4. List of radiomic features. 

Shape 

Features 

Elongation, Flatness, Least Axis Length, Major Axis Length, Maximum 2D Diameter 

Column, Maximum 2D Diameter Row, Maximum 2D Diameter Slice, Maximum 3D 

Diameter, Mesh Volume, Minor Axis Length, Sphericity, Surface Area, Surface Volume 

Ratio, Voxel Volume 

First-

Order 

Features 

10th Percentile, 90th Percentile, Energy, Entropy, Interquartile Range, Kurtosis, 

Maximum, Mean Absolute Deviation, Mean, Median, Minimum, Range, Robust Mean 

Absolute Deviation, Root Mean Squared, Skewness, Total Energy, Uniformity, Variance 

Texture 

Features 

GLCM: Autocorrelation, Cluster Prominence, Cluster Shade, Cluster Tendency, 

Contrast, Correlation, Difference Average, Difference Entropy, Difference Variance, Id, 

ldm, Idmn, Idn, Imc1, Imc2, Inverse Variance, Joint Average, Joint Energy, Joint 

Entropy, MCC, Maximum Probability, Sum Average, Sum Entropy, Sum Squares  

GLDM: Dependence Entropy, Dependence Non Uniformity, Dependence Non 

Uniformity Normalized, Dependence Variance, Gray Level Non Uniformity, Gray Level 

Variance, High Gray Level Run Emphasis, Large Dependence Emphasis, Large 

Dependence High Gray Level Emphasis, Large Dependence Low Gray Level 

Emphasis, Low Gray Level Emphasis, Small Dependence Emphasis, Small 

Dependence High Gray Level Emphasis, Small Dependence Low Gray Level Emphasis 

GLRLM: Gray Level Non Uniformity, Gray Level Non Uniformity Normalized, Gray 

Level Variance, High Gray Level Run Emphasis, Long Run Emphasis, Long Run High 

Gray Level Emphasis, Long Run Low Gray Level Emphasis, Low Gray Level Run 

Emphasis, Run Entropy, Run Length Non Uniformity, Run Length Non Uniformity 

Normalized, Run Percentage, Run Variance, Short Run Emphasis, Short Run High 

Gray Level Emphasis, Short Run Low Gray Level Emphasis 

GLSZM: Gray Level Non Uniformity, Gray Level Non Uniformity Normalized, Gray Level 

Variance, High Gray Level  Zone Emphasis, Large Area Emphasis, Large Area High 

Gray Level Emphasis, Large Area Low Gray Level Emphasis, Low Gray Level Zone 

Emphasis, Size Zone Non Uniformity, Size Zone Non Uniformity Normalized, Small 

Area Emphasis, Small Area High Gray Level Emphasis, Small Area Low Gray Level 

Emphasis, Zone Entropy, Zone Percentage, Zone Variance 

NGTDM: Busyness, Coarseness, Complexity, Contrast, Strength 

GLCM gray level co-occurrence matrix, GLDM = Gray Level Dependence Matrix, GLRLM = 

Gray Level Run Length Matrix, GLSZM = Gray Level Size Zone Matrix, NGTDM = 

Neighboring Gray Tone Difference Matrix. 



4. Description of the traditional machine learning algorithms

Multilayer perceptron (MLP). The architecture of the MLP is completely defined by an input 

layer, one or more hidden layers, and an output layer. The input data is processed by the 

MLP in a forward direction, passing through each single layer.  The training of the network is 

accomplished based on a supervised learning technique (backpropagation) that requires 

given input-output data pairs.  

Adaptive boosting (AdaBoost). AdaBoost is an ensemble learning method and can be 

used in conjunction with many other types of learning algorithms to improve performance. 

The output of the other learning algorithms ('weak learners') is combined into a weighted sum 

that represents the final output of the boosted classifier. AdaBoost is adaptive in the sense 

that subsequent weak learners are tweaked in favor of those instances misclassified by 

previous classifiers. AdaBoost typically combines weak learners (such as decision stumps) 

but can also effectively combine strong learners (such as deep decision trees). 

Random forest. The random forest is an ensemble method composed of many smaller 

models. The classification and prediction is achieved by combining the outputs of these 

smaller models which are usually classification and regression trees (CART). CART operates 

based on a repeated partitioning of the input data in order to estimate the conditional 

distribution of a response (output class) for a given set of feature variables. The algorithm 

implements a binary decision tree where every single feature of the input is considered as a 

candidate for the split. Binary decision trees are nonlinear multistage classifiers. This 

classification system operates by searching a tree-based decision system. The trees are 

combined to a forest based on bagging. To avoid overfitting, each model is fitted only to a 

sample of the same size as the original input data but selected with replacement. This 

sample technique is known as the bootstrap sample. 



5. Model optimization

Supplementary Table S5. List of optimized hyperparameters. 

Model Optimized Hyperparameters 

Multilayer perceptron Number of hidden layers, number of neurons, learning rate (selected 

0.5; optimization range: 0.1 – 0.3), momentum (selected 0.2; 

optimization range: 0.1 – 0.3) 

Adaptive boosting Maximum depth of the tree (unlimited), numer of trees in the random 

forest (selected 100, optimization range: 10 – 1000) 

Random forest Classifier (selected J48, optimization range: all available classifiers) 

1D-CNN Number of hidden layers, number of filters, kernel size, stride, activation 

functions, dropout rates, loss functions, learning rate, optimizer 

LSTM Number of layers and units, activation functions, dropout rates, learning 

rate, optimizer 

CNN = Convolutional Neural Networks; LSTM = Long short-term memory 

6. Description of the 1-dimensional Convolutional Neural Network (1D-CNN)

Supplementary Table S6. Parameters of one-dimensional convolutional neural network 

(1D-CNN). 

Type Input size No. of 

Filters 

Kernel 

size 

Stride Padding Activation 

Input 74, 1 

1D Convolution Layer 74, 1 8 2 1 same ReLU 

Max Pooling Layer 74, 8 2 1 same 

1D Convolution Layer 74, 8 8 3 1 same ReLU 

Drop out (rate 0.2) 74, 8 

Max Pooling Layer 74, 8 2 1 same 

1D Convolution Layer 74, 8 8 3 1 same ReLU 

Drop out (rate 0.2) 74, 8 

Max Pooling Layer 74, 8 2 2 same 

Flatten Layer 37, 8 

Dense layer 296 ReLU 

Drop out (rate 0.2) 296 

Dense layer 296 Sigmoid 

ReLU = rectified linear unit. 



7. Model Performance Testing

Supplementary Figure S2: Calculation of the confusion matrix-derived metrics. 

Predicted Positive 
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(PN)
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TP+FN
True Positive (TP) False Negative (FN)
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TP/P

Negative (N) = 

FP+TN
False Positive (FP) True Negative (TN)

Specificity = 

TN/N

Accuracy = 

(TP+TN)/(P+N)
Precision = TP/PP

F score = 

(2*TP)/(2*TP+FP+FN)

Predicted condition

A
ct

u
al

 c
o

n
d

it
io

n



Supplementary Results 

Supplementary Figure S3: Confusion matrices for the independent internal and the 

independent external testing. ABoost = adaptive boosting; MLP = multilayer perceptron; RF = 

random forest; CNN = Convolutional Neural Networks; LSTM = Long short-term memory; wt 

= IDH wild-type glioma, mut = IDH mutated glioma. 
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