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SYNTHESIS

This section summarises all procedures undertaken in synthesising the NHS esters of

NPX and ACE, and the studied complexes, 1-6.

1. Synthesis of NHS esters

Each acid was reacted with 1 mol eq. of NHS and DCC in CsHsO. Each reaction solution
was left stirring at room temperature for 24 h. The precipitated by-product,
dicyclohexylurea (DCU), was removed through syringe filtration. The filtrate was
collected and reduced to dryness through rotary evaporation. All NHS esters were used

without further purification.
2. Synthesis of platinum(IV) complexes, 1-6

The appropriate precursor, [Pt'V(Hr)(AL)(OH):]*, was reacted with 2 mol eq. of NHS
esters of NPX or ACE in DMSO (1 -2 mL) for 72 h at room temperature, in the dark. The
reaction solution was washed with excess Et2O and vigorously mixed using a plastic
pipette, followed by centrifugation to afford a colourless supernatant and an oily brown
layer. The colourless supernatant was discarded while the oily brown layer was collected
and dissolved in methanol (1 — 2 mL), followed by the addition of excess Et2O to induce
precipitation. Centrifugation was undertaken to collect the final precipitate. Excess
CsHeO was mixed with the precipitate and sonicated, affording a pure and solidified

yellow or green precipitate that was collected through centrifugation.
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INSTRUMENTATION

This section summarises all procedures undertaken in confirming the structure and

purity of the studied complexes, 1-6.
1. Flash Chromatography

A Biotage Isolera™ One flash chromatography system (Shimadzu, Sydney, NSW,
Australia) equipped with a Biotage® Sfar C18 D (Duo 100 A 30 um 30 g) (Shimadzuy,
Sydney, NSW, Australia) was employed to purify the platinum(IV) complexes. The
mobile phase consisted of solvents, A (d.i.H20) and B (MeOH). The samples were
dissolved in d.i.H2O0/MeOH (50:50) and eluted through the column with a 0 — 40% linear
gradient for 50 min with a flow rate of 4 mL.min"!, collected within the set wavelengths

of 200 — 400 nm.
2. High-Performance Liquid Chromatography (HPLC)

An Agilent (Melbourne, VIC, Australia) Technologies 1260 Infinity instrument equipped
with a Phenomenex Onyx™ Monolithic Cis-reverse phase column (100 X 4.6 mm, 5 um
pore size) (Sydney, NSW, Australia) was utilised for the complexes. The mobile phase
consisted of solvents, A (0.06% TFA in d.i.H20) and B (0.06% TFA in CHsCN/d.i.H.0O
(90:10)). An injection volume of 5 uL was utilised and eluted with a 0 — 100% linear
gradient over 15 min with a flow rate of 1 mL.min", at the set wavelengths of 214 and 254
nm. An Agilent ZORBAX RX-Cis column (100 X 4.6 mm, 3.5 pm pore size) (Sydney, NSW,
Australia) was utilised for the NHS esters of NPX and ACE using the same method

described above.

3. Nuclear Magnetic Resonance (NMR) Spectroscopy
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TH-NMR, 2D-COSY, H-Pt-HMQC and 1D-Pt-NMR were carried out on a 400 MHz
Bruker (Melbourne, VIC, Australia) Avance spectrometer at 298 K. All complexes were
prepared to a concentration of 10 mM in 600 puL using D20. DMSO-ds was utilised for the
NHS esters of NPX and ACE. 'H-NMR was set to 10 ppm and 16 scans with a spectral
width of 8250 Hz and 65,536 data points. 2D-COSY was acquired using a spectral width
of 3443 Hz for both 'H nucleus, F1 and F2 dimensions, with 256 and 2048 data points,
respectively. H-"Pt-HMQC was carried out using a spectral width of 214,436 Hz and
256 data points for *Pt nucleus, F1 dimension, also a spectral width of 4808 Hz with 2048
data points for 'H nucleus, F2 dimension. 1D-Pt was measured using a spectral width
of 85,470 Hz and 674 data points. All resonance recorded, were presented as chemical
shifts in parts per million (& ppm) with J-coupling constants reported in Hz. For spin
multiplicity: s (singlet); d (doublet); dd (doublet of doublets); t (triplet); q (quartet) and m
(multiplet). All spectroscopic data gathered were generated and plotted using TopSpin

4.1.3 analysis software.
4. Ultraviolet-visible (UV) Spectroscopy

An Agilent (Melbourne, VIC, Australia) Technologies Cary 3500 UV-Vis Multicell Peltier
spectrophotometer was utilised to perform the UV spectroscopy experiments. UV
spectroscopic experiments were completed at room temperature in the range of 200 — 400
nm with a 1 cm quartz cuvette. All complexes were prepared in d.i.H20, while the NHS
esters of NPX and ACE were prepared in CHsCN. A stock solution of each complex or
compound (1 mM) was prepared, and absorption spectra were recorded at a series of
different concentrations by titrating 9 x 3 pL aliquots into a cuvette containing d.i.H20
(3000 puL). Experiments were repeated in triplicate. All spectra were baseline corrected by
the instrument — a baseline containing d.i.H2O was acquired first, and automatically
subtracted from each experiment. Average extinction coefficients (¢) were determined

with standard deviation and errors based on the generated plot curves.
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5. Circular Dichroism (CD) Spectroscopy

A Jasco (Easton, PA, United States) J-810 CD spectropolarimeter was used to measure the
CD spectra of the complexes. The samples were prepared in d.i.H20 in a 1 mm optical
glass cuvette or 1 cm quartz cuvette. CD experiments were undertaken at room
temperature in the wavelength range of 200 — 400 nm (30 accumulations) with a
bandwidth of 1 nm, data pitch of 0.5 nm, a response time of 1 sec and a 100 nm.min! scan
speed. The flowrate of nitrogen gas was 6 L.min'. The HT (photo-multiplier) level
remained below 500 V for all experiments. A CD simulation tool (CDToolX) was used to

generate the spectra.
6. Electrospray lonisation Mass Spectrometry (ESI-MS)

High-resolution ESI-MS experiments were undertaken using a Waters (Sydney, NSW,
Australia) SYNAPT G2-Si quadruple time-of-flight (QTOF) HDMS. A stock solution of
each complex (1 mM) was prepared in d.i.H20. 5 pL of the stock solution was diluted
with 995 pL of d.i.H20 to create the sample solution. For the NHS esters of NPX and ACE,
CHsCN was used to prepare the stock solutions (1 mM). 5 uL of the stock solution for
each NHS ester was also diluted with 995 uL of CHsCN to create the sample solutions.
The wire or capillary where the sample solutions were injected was washed with

d.i.H20/CH3CN (50:50) before every experiment to avoid cross-contamination.
7. Infrared Spectroscopy (IR)

A Nicolet™ iS™ 5 FTIR Spectrometer (Sydney, NSW, Australia) was utilised to measure
the IR spectra of the complexes. IR experiments were undertaken at room temperature,
within the wavelength range of 400 — 4000 cm, and the number of scans was 16. The

resolution was set to 4 cm™!. The optical velocity was 0.4747 m/s. For every sample run, a
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background spectrum was collected. OMNIC™ Series Software was used to process the

spectra.
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MEASUREMENTS

This section summarises all procedures undertaken to determine the physicochemical

and biological properties of the studied complexes, 1-6.
1. Lipophilicity Studies

Elution profiles were acquired on an Agilent (Melbourne, VIC, Australia) Technologies
1260 Infinity instrument equipped with a Phenomenex Onyx™ Monolithic Cis-reverse
phase column (100 x 4.6 mm, 5 pum pore size) (Sydney, NSW, Australia). The mobile
phase consisted of solvents, A (0.06% TFA in d.i.H20) and B (0.06% TFA in
CH5CN/d.i.H20 (90:10)). Potassium iodide was used as an external dead volume marker
to determine the dead time of the column. The retention time (Tr) of the complexes were
measured at varying isocratic ratios ranging from 32 to 50% of solvent B at 1 mL.min"".
An injection volume of 10 pL was utilised. Capacity factors were determined according

to Equation (1):

k= (Tr = To)/To 1)

where k is the capacity factor, Tr is the retention time of the analyte, and To represents the
dead time. A minimum of four different mobile compositions were used for each complex
to calculate k. A linear plot was generated of log k against the concentration of CH3sCN in

the mobile phase to determine the value of log kw expressed by Equation (2):
logk = S¢ + logk,, (2)

where S is the slope, ¢ is the concentration of the CH3CN in the mobile phase, and log kw
represents the capacity factor of the complex in 100% d.i.H20. Extrapolation of this linear

plot to the y-intercept indicates the log kw value.
2. Reduction Studies
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A sequence of 'H-NMR experiments was carried out for 1 h at 37 °C, followed by 1D-
1Pt-NMR within the regions of —2800 and 400 ppm. An amount of 10 mM PBS (~7.4 pH)
was transferred to a vial and reduced to dryness through rotary evaporation. AsA (~1
mg) was combined with the metal complex (~5 mg) and transferred to the vial containing
the dried PBS. 600 pL of D20 was then added to the vial to dissolve the complex, AsA
and the PBS together. Each reaction was followed at 37 °C until the complete reduction

of the complexes.
3. Cell Viability Assays

The cell lines tested were: HT29 colon, U87 glioblastoma, MCEF-7 breast, A2780 ovarian,
H460 lung, A431 skin, Dul45 prostate, BE2-C neuroblastoma, SJ-G2 glioblastoma, MIA
pancreas, ADDP ovarian variant, and the non-tumour derived MCF10A breast line. In
addition to 1-6, NPX and ACE were also tested for reference and comparison. All test
agents were prepared in DMSO (30 mM stock solutions) and stored at —20 °C until use.
All cell lines were cultured in a humidified atmosphere 5% carbon dioxide at 37 °C. The
cancer cell lines were maintained in Dulbecco’s modified Eagle’s medium (DMEM)
(Trace Biosciences, Sydney, NSW, Australia) supplemented with 10% foetal bovine
serum, 10 mM sodium bicarbonate penicillin (100 IU mL™), streptomycin (100 ug mL™)
and glutamine (4 mM). The non-cancer MCF10A cell line was cultured in DMEM:F12
(1:1) cell culture media, 5% heat inactivated horse serum, supplemented with penicillin
(50 IU mL?), streptomycin (50 pg mL?), 20 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES), L-glutamine (2 mM), epidermal growth factor
(20 ng mL™), hydrocortisone (500 ng mL?), cholera toxin (100 ng mL™) and insulin (10 pg
mL1). Cytotoxicity was determined by plating cells in duplicate in 100 mL medium at a
density of 2500 — 4000 cells per well in 96 well plates. On day 0 (24 h after plating) when
the cells were in logarithmic growth, 100 pL of medium with or without the test agent

was added to each well. After 72 h, the Gls was evaluated using the MTT (3-[4,5-
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dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay and absorbance was read
at 540 nm. An eight-point dose response curve was produced from which the Gls value
was calculated, representing the drug concentration at which cell growth was inhibited
by 50% based on the difference between the optical density values on day 0 and those at

the end of drug exposure.
4. Reactive Oxygen Species (ROS) Potential

A total of 25,000 cells/mL of HT29 cells in DMEM were seeded in 96-well plates. Cells
were washed with 1X kit buffer, and then stained with 25 uM 2’,7’-dichlorofluorescein
diacetate (DCFH-DA) and incubated for 45 min. DCFH-DA was then removed, and cells
were then re-washed with 1X kit buffer, after which phenol red free media was added.
Cells were then treated with a Gls drug concentration for each complex. The plates were
directly scanned to measure fluorescence (relative fluorescence units (RFU)) at different
time points using the Glo-Max®-Multimode microplate reader (Promega Corporation,
Alexandra, VIC, Australia) at an excitation/emission of 485/535 nm. To generate the
positive control (20 uM tert-butyl hydroperoxide (TBHP)), cells were washed with 1X kit
buffer, and stained with DCFDA (25 uM) for 45 min; this was removed and TBHP was
added in phenol red free media, and the resulting solution was scanned as described

above.
5. Mitochondrial Membrane Potential (MtMP)

In 96-well plates, 25,000 cells/mL of HT29 colon cells in DMEM were seeded. Cells were
treated with a Glso drug concentration for each complex. At 24, 48 or 72 h, cells were
washed with PBS and stained with 1 uM tetramethylrhodamine, ethyl ester (TMRE) and
incubated for 30 min. TMRE was then removed, and cells were then re-washed with PBS
(0.2% BSA), after which phenol red free media was added. The plates were directly

scanned to measure fluorescence (expressed as RFU), using the Glo-Max®-Multimode
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microplate reader (Promega Corporation, Alexandra, VIC, Australia) at an
excitation/emission of 549/575 nm. For the positive control, 20 uM carbonyl cyanide 4-
(trifluoromethoxy) phenylhydrazone (FCCP)) was added to the cells and incubated for
10 min. The cells were washed with PBS (0.2% BSA) and stained with TMRE (1 uM) for
30 min; this was removed and phenol red free media was added, and the final solution

was scanned as mentioned above.
6. Cyclooxygenase-2 (COX-2) Inhibition

The standards, samples and assay preparation, and completion were achieved as
instructed by the manufacturer. The assay necessitated three steps, being the standards
preparation, the COX reaction, and the enzyme immunoassay. The standards were
prepared in 2-fold serial dilution of the prostaglandin Fza enzyme-linked immunosorbent
assay (ELISA) standard starting at 500 pg/mL to 3.9 pg/mL in ELISA buffer (1X). The COX
reaction dilution preparation for the background samples included the addition of
background COX-2 (20 upL), which was inactivated in boiling water for 3 min. The
background values were generated by adding 10 pL of the inactivated COX-2, 160 pL of
the reaction buffer (1X), 10 uL of heme and 10 pL of DMSO (inhibitor vehicle). The COX
reaction dilution preparation for the COX-2 100% initial activity samples included the
addition 160 pL of the reaction buffer (1X), 10 uL of heme, 10 uL of COX-2 and 10 pL of
DMSO (inhibitor vehicle). The COX reaction dilution preparation for the COX-2 inhibitor
samples included the addition of 160 pL of the reaction buffer (1X), 10 uL of heme, 10 pL
of COX-2 and 10 pL of the sample being investigated for COX-2 inhibition (1-6, NPX,
ACE, the precursor platinum(Il) scaffolds (PHENSS, 5MESS and 56MESS), and
cisplatin). All reactions were incubated at 37 °C for 10 min. The reaction was then initiated
by the addition of 10 pL of arachidonic acid and potassium hydroxide solution (1:1), and
then incubated at 37 °C for 30 sec prior to the addition of 30 pL of tin(II) chloride to halt

enzyme catalysis. The tubes were then vortexed and incubated for 5 min at room
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temperature. The background samples were diluted with ELISA buffer (1X) 1:100 times
and the COX-2 100% initial activity and COX-2 inhibitor samples were diluted 1:2000 and
1:4000 times. For the enzyme immunoassay, 100 uL of the ELISA buffer (1X) was added
to non-specific binding wells (NSBs), 50 uL of the ELISA buffer (1X) was added to
maximum binding wells (Bo) and 50 uL of each prostaglandin Foa standard was added to
standard wells in duplicates. 50 pL of background sample and 50 pL of COX-2 100%
initial activity samples were independently added to the wells in duplicates. Inhibitor
samples (50 pL) being investigated were added to the wells in triplicates. Prostaglandin
Foa acetyl-cholinesterase (AChE) tracer (50 uL) was added to all wells but the total
activity well and blank wells. Prostaglandin Foa ELISA antiserum (50 uL) was added to
each well but the total activity well, NSBs and blank wells. The plate was then covered
with a plastic seal and incubated overnight at room temperature on an orbital shaker. The
wells were then washed five times using kit wash buffer (1X). Ellman’s reagent (200 pL)
was then added to each well, as well as 5 pL of the AChE tracer into the total activity
well. The plate was then covered with the plastic seal, placed on an orbital shaker in the
dark to develop for 2 hours at room temperature. The absorbance was then read at 405
nm using the SpectraMax M2 series multi-mode microplate reader (Molecular Devices,

San Jose, CA, USA).

Page | 12



CHARACTERISATION DATA
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HPLC Chromatograms of NHS Esters
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Figure S1: HPLC chromatogram of NHS-NPX with product peak trace at 11.8 min.
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Figure S2: HPLC chromatogram of NHS-ACE with product peak trace at 13.3 min.
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"H-NMR Spectra of NHS Esters
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Figure S3: 'TH-NMR spectrum of NHS-NPXin DMSO-ds.
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Figure S4: '"H-NMR spectrum of NHS-ACE in DMSO-ds.
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ESI-MS Spectra of NHS Esters
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Figure S5: ESI-MS spectrum of NHS-NPXin CHsCN.

1: TOF MS ES+

100 512.3030 5.38e4
[e]
o
oy g
N
Cl ~ o o O
o
(o]
7
=
512.2416
512.2597
1
512.2235 Slemod 212 399 123520 512.6757
511.9950 5120162 5120723 5121428 5121703 | 5124117 s12.4800 5125038 crosesn 5126150
01[]11 IR . . ! I L] P S I S | s
T T T T T — T T T T T T T T
512.000 512.100 512.200 512.300 512.400 512.500 512.600

Figure S6: ESI-MS spectrum of NHS-ACE in CHsCN.
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HPLC Chromatograms of 1-6
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Figure S7: HPLC chromatogram of 1.
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Figure S9: HPLC chromatogram of 3.
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Figure S11: HPLC chromatogram of 5.
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'H-NMR Spectra of 1-6
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Figure S13: '"H-NMR spectrum of 1in D-0O.
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Figure S14: '"H-NMR spectrum of 2in D20O.
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Figure S15: '"H-NMR spectrum of 3in D20O.
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Figure S16: 'H-NMR spectrum of 4in D20.
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Figure S17: 'TH-NMR spectrum of 5in D20.
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Figure S18: 'H-NMR spectrum of 6in D20.
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2D-COSY Spectra of 1-6
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Figure $19: 2D-COSY spectrum of 1in D20.
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Figure 520: 2D-COSY spectrum of 2in D20.
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Figure S21: 2D-COSY spectrum of 3in D20.
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H-1Pt-HMQC Spectra of 1-6
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Figure §25: 'H-1*Pt-HMQC spectrum of 1in D20 at 400 ppm.
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Figure S26: 'H->Pt-HMQC spectrum of 1in D20 at -2800 ppm.
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Figure §27: 'H-1*Pt-HMQC spectrum of 2in D20 at 400 ppm.

Page | 33



Region: —2800,ppm

I l. T -l I T T T I T T . T | T T I. | T T T I T
10 8 6 4 2 () F2 [ppm]

Figure S28: 'H->Pt-HMQC spectrum of 2in D20 at -2800 ppm.
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Figure 529: 'H-1*Pt-HMQC spectrum of 3in D20 at 400 ppm.

Page | 35



k! "E
: L&
B b
.5 b
P L
-8
: 5
: K
L.
§
»
; i
b "+
, R
L]
:
°
. Region: —2800 ppm
. :
D ] T T T I T T T I T T T | = T T T | T T T I T
10 8 6 4 2 [ F2 [ppm]

Figure S30: 'H->Pt-HMQC spectrum of 3in D20 at -2800 ppm.
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Figure S32: 'H->Pt-HMQC spectrum of 4in D20 at -2800 ppm.
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Figure S33: 'H-'>Pt-HMQC spectrum of 5in D20 at 400 ppm.
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Figure S34: 'H->Pt-HMQC spectrum of 5in D20 at -2800 ppm.
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Figure S35: 'H-1>Pt-HMQC spectrum of 6in D20 at 400 ppm.
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Figure S36: 'H->Pt-HMQC spectrum of 6in D20 at -2800 ppm.
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UV Spectra of 1-6

UV absorption spectra of 1

1
Standard curve @ 206 nm Standard curve @ 227 nm
0.9 12 0.9
08 y = 74616x+0.0071
£ 1 y-=93788x+0.0098 > £ R?=0.9999
1 R?=0.9999 co7 -
o = .
Qo8 - Qos .
® - ®os o
08 806 [ e ) ® o
2 o 804 o
£ ]
Boal . 203
g | o g P
Lo2 | . o g02 e
0.7 - 01 o
0
0 0000002 0.000004 0.000006 0.000008 0.00001  0.000012 0 0.000002 0.000004 0.000006 0.000008 0.00001 0.000012
Concentrationin M Concentrationin M
0.6
4 Standard curve @ 306 nm Standard curve @ 279 nm
=
- 0.1 03
> 0.09 y =26960x+0.0017  _.®
y = 8154.4x+ 0.0004 ry =
305 Eoos RI=09979 . Eox R*=00007—w
c Y © I3 P
© o 0.07 N 02
o g =) o~ 0
2 ®00 ® =4
o .
§ o 0.05 - 3015 4
€004 g c o
] 3 5 g
0.4 £ 008 - £ o o
400 e 2005 i
0.01 o’ o
]
03 0 0000002 0.000004 0.000006 0.000008 0.00001 0.000012 0 0.000002 0.000004 0.000006 0.000008 0.00001 0.000012
: Concentrationin M Concentrationin M
0.2
0.1
0
200 220 240 260 280 300 320 340 360 380 400

Wavelength (nm)

Figure S37: UV spectra of 1and plot curves at 206, 227, 279 and 306 nm.
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UV absorption spectra of 2
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Figure S38: UV spectra of 2and plot curves at 207, 228, 283 and 312 nm.
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UV absorption spectra of 3
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Figure S39: UV spectra of 3and plot curves at 208, 231, 289 and 318 nm.
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Figure S40: UV spectra of 4and plot curves at 203, 278 and 305 nm.
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Figure S41: UV spectra of 5and plot curves at 204, 284 and 311 nm.

Page | 47



Absorbance values

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Cl

UV absorption spectra of 6

Standard curve @ 204 nm

0.9
08 y = 193646x- 0.0088 .
E R?=0.9998
Zo7 £
Qo6
®os &
o
g o4
203
202
<
0.1 o
0
0 0.000001  0.000002  0.000003  0.000004  0.000005
Concentrationin M
Standard curve @ 244 nm
0.3

y=68630x-00047 _.®
E 025 R?=09998 e
< .
02
®
© 015
2
8 o1
5
2
2005 -
[
0
0 0000001  0.000002 0000003 0000004  0.000005

Concentrationin M

Standard curve @ 290 nm

025
y=58353x-0.0054
0o .
E 02 Ri=09998 .@
§ L
®015 -
o
3
£ 01
2
2
o005

o«

0
0.0E+005.0E-07 1.0E-06 1.5E-06 2.0E-06 2.5E-06 3.0E-06 3.5E-06 4.0E-06 4.5E-06
Concentrationin M

Standard curve @ 316 nm

0.09 y=22719x-0.0036 @
Eoos R?=0.9998 g
Q007 e

0 0.000001 0.000002 0.000003 0.000004 0.000005
Concentrationin M

200

220

280 300 320 340

Wavelength (nm)

Figure S42: UV spectra of 6 and plot curves at 204, 244, 290 and 316 nm.
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CD Spectra of 1-6
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Figure S44: CD spectrum of 2.
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Figure $46: CD spectrum of 4.
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ESI-MS Spectra of 1-6
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Figure $49: ESI-MS spectrum of 1.
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Figure S50: ESI-MS spectrum of 2.
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Figure S51: ESI-MS spectrum of 3.

Page | 54



1004

920.2169 _

1: TOF MS ES+

1.62¢6
1618835
919.2168
1426602
[ ) ou
2+
AN T NH
Pt 918.2145
ST 932676
o] N | NH; 9212172
/©/K \I ) 874814
NN {
b [o]] =~
0O O
o 9222177
678668
/0
4
9232194
211161
9242184
87320
_— T — T Yy m/z
902 904 906 908 910 912 914 916 918 920 922 924 926 928 930 932 934 936 938

Figure S52:

ESI-MS spectrum of 4.
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Figure S53: ESI-MS spectrum of 5.
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Figure S54: ESI-MS spectrum of 6.
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IR Measurements
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Lipophilicity Measurements

log k vs [CH3CN] log k vs [CH3CN]
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Figure S61: Generated plots of log k versus concentration of the organic solvent, CHsCN to determine the chromatographic

lipophilicity index, log kw of 1-6.
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Reduction Studies of 1-6 in PBS and Ascorbic Acid

3 3

. 20 om

Region: 400 ppm Region: —2800 ppm

Figure S62: Preliminary 1D-'"Pt-NMR spectra of 1, 2, and 3 in 10 mM PBS (~7.4 pH)
within the regions of 400 and —2800 ppm and at 310.15 K.
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Figure S63: Preliminary 1D-*Pt-NMR spectra of 4, 5 and 6 in 10 mM PBS (~7.4 pH) within
the regions of 400 and —2800 ppm and at 310.15 K.

Page | 66



frel

Platinum(ll) resonances

2T e NPX resonances s
N < =
T o é .
T=60
I i N . V ul
_-r f_39 IJ _ J[“ ,___/‘ — __,IHJ S, W — II l _Il S— _I " l‘\_ Im U - — N i — A /“H‘ ~ [_:_"‘_!
1 ‘ E-
= ] g | M u L
T=25 J_ M sl g Ao b N U =

r=s |l ol W
= A Mm

H2/H9 H4/H7 H3/H8 HS/H6

|

-

Qg
S S S

[

:

Platinum(lV) resonances

. . ; . . ; ; : ; : : : . ;
8 6 4 2 [ppm]

Figure S64: 'H-NMR spectra of 1 with 10 mM PBS (~7.4 pH) and AsA in D20 at 310.15 K, in different time intervals,
highlighting the movement of resonances from the heterocyclic protons and the aromatic protons of the NPX ligand as

indicated by the arrows and boxes. T represents time in min.
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Figure S65: 1D-1>Pt-NMR spectra of 1 with 10 mM PBS (~7.4 pH) and AsA in D20, within the regions of 400 and —2800 ppm

at 310.15 K, highlighting its partial reduction after 1 h from the final 'H-NMR experiment. Inset: structures of complex 1

and its corresponding platinum(II) precursor, PHENSS.
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Figure S66: 'H-NMR spectra of 2 with 10 mM PBS (~7.4 pH) and AsA in D20 at 310.15 K, in different time intervals,
highlighting the movement of resonances from the heterocyclic protons and the aromatic protons of the NPX ligand as

indicated by the red arrows. T represents time in min.
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Figure S67: 1D->Pt-NMR spectra of 2 with 10 mM PBS (~7.4 pH) and AsA in D20, within the regions of 400 and —2800 ppm

at 310.15 K, highlighting its complete reduction after 1 h from the final 'H-NMR experiment. Inset: structures of complex 2

and its corresponding platinum(II) precursor, 5SMESS.
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Figure S68: 'H-NMR spectra of 3 with 10 mM PBS (~7.4 pH) and AsA in D20 at 310.15 K, in different time intervals,
highlighting the movement of resonances from the heterocyclic protons and the aromatic protons of the NPX ligand as

indicated by the arrows and boxes. T represents time in min.
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Figure S69: 1D->Pt-NMR spectra of 3 with 10 mM PBS (~7.4 pH) and AsA in D20, within the regions of 400 and —2800 ppm

at 310.15 K, highlighting its partial reduction after 1 h from the final 'H-NMR experiment. Inset: structures of complex 3

and its corresponding platinum(II) precursor, 56 MESS.
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Figure S70: 'H-NMR spectra of 4 with 10 mM PBS (~7.4 pH) and AsA in D20 at 310.15 K, in different time intervals,
highlighting the movement of resonances from the heterocyclic protons and the aromatic protons of the ACE ligand as

indicated by the arrows and boxes. T represents time in min.
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Figure S71: 1D-'>Pt-NMR spectra of 4 with 10 mM PBS (~7.4 pH) and AsA in D20, within the regions of 400 and —2800 ppm
at 310.15 K, highlighting its complete reduction after 1 h from the final 'H-NMR experiment. Inset: structures of complex 4

and its corresponding platinum(II) precursor, PHENSS.
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Figure S72: 'H-NMR spectra of 5 with 10 mM PBS (~7.4 pH) and AsA in D20 at 310.15 K, in different time intervals,
highlighting the movement of resonances from the heterocyclic protons and the aromatic protons of the ACE ligand as

indicated by the arrows and boxes. T represents time in min.
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Figure S73: 1D-1>Pt-NMR spectra of 5 with 10 mM PBS (~7.4 pH) and AsA in D20, within the regions of 400 and —2800 ppm
at 310.15 K, highlighting its complete reduction after 1 h from the final 'H-NMR experiment. Inset: structures of complex 5

and its corresponding platinum(II) precursor, 5SMESS.
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Figure S74: 'H-NMR spectra of 6 with 10 mM PBS (~7.4 pH) and AsA in D20 at 310.15 K, in different time intervals,
highlighting the movement of resonances from the heterocyclic protons and the aromatic protons of the ACE ligand as

indicated by the arrows and boxes. T represents time in min.
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Figure S75: 1D-'>Pt-NMR spectra of 6 with 10 mM PBS (~7.4 pH) and AsA in D20, within the regions of 400 and —2800 ppm
at 310.15 K, highlighting its complete reduction after 1 h from the final 'H-NMR experiment. Inset: structures of complex 6

and its corresponding platinum(II) precursor, 56 MESS.
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Stability Studies of 1-6 in PBS

PtV = Precursor Platinum(IV) Dihydroxy Complexes
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A: HPLC Chromatograms (post 36 h at RT)

B: HPLC Chromatograms (post 36 h at 37 °C)

Figure S76: Combined HPLC chromatograms acquired for 1-3 incubated with PBS (~7.4 pH) at room temperature and at
37 °C after 36 h.
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Pt'"and PtV = Precursor Platinum(ll) and Platinum(lV) Dihydroxy Complexes
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Figure S77: Combined HPLC chromatograms acquired for 4-6 incubated with PBS (~7.4 pH) at room temperature and 37
°C after 36 h.
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ROS Measurements
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Figure S78: ROS production upon treatment with 1-6, NPX, ACE, and cisplatin in HT29 colon cells at 0, 0.25, 0.5, 1, 3, 6, 12,

24, 48 and 72 h. PHENSS(IV)-NPX (1), 5SMESS(IV)-NPX (2), 56MESS(IV)-NPX (3), PHENSS(IV)-ACE (4), 5SMESS(IV)-ACE
(5), and 56 MESS(IV)-ACE (6). TBHP: t-butyl hydroperoxide. Data points denote mean + SEM. n = 3 from three independent

experiments where samples were run in triplicates.
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COX-2 Inhibition Measurements

Absorbance
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Figure S79: COX-2 calibration curve generated by plotting the absorbance against known concentrations (pg/mL). This
curve was used to quantify the inhibition of COX-2 in HT29 cells after a 72 h treatment with complexes 1-6, NPX, ACE or

cisplatin; y=0.0038x + 0.1167 and R?=0.9988
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