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SUPPLEMENTARY METHODS 

 Sample selection 

 Our study was conducted on 201 ESCC surgical samples (fresh frozen tissues). All the 
samples were derived from esophagectomy and stored at -80 ℃ for long-term preservation 
in the biobank of Sun-Yat Sen University Cancer Center. All patients underwent 
esophagectomy, achieved complete resection without receiving neoadjuvant therapy and 
experienced pathological-validated lymph node metastasis. Samples were chosen 
following our established criteria (Figure S1). 
Inclusion criteria contained: 

(1) Patients whose age ≥18 years old, preoperative KPS score ≥90;
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(2) Pathological diagnosis as esophageal squamous cell carcinoma and tumor located
in thoracic segment of the esophagus; 

(3) 𝑅଴ resection via thoracic approach and standard lymph node excision;
(4) Neo-adjuvant treatment naïve;
(5) Patients experienced lymph node metastasis confirmed by pathological diagnosis

Exclusion criteria contained: 
(1) Patients with secondary primary tumor;
(2) Patients with distant metastasis found by PET-CT.
(3) Patients died within 30 days after surgery or died of post-operation complication;
(4) Patients lacking essential clinical information, such as age, sex, operation record,

pathological diagnosis and follow-up data. 

Determinant of tumor purity 

 All samples underwent pathological review via frozen section. A tissue section was 
created with two H&E slides (termed as top and bottom): a 4 μm frozen section (top 
slide) was cut, 20 mg of tumor tissue was shaved from the tissue for library construction, 
then a second 4 μm frozen section was cut (bottom slide). An H&E stain was conducted 
on both slide tissue sections. SYSUCC-authenticated pathologist conducted diagnosis 
verification and tumor purity assessment. Pathologist initially screened the slide in low 
magnification to determine the microscopic morphology, then magnified to 20X and 
reviewed 10 representativefields on each slide. The tumor purity was derived from the 
proportion of tumor nuclei compared to the total nuclei present on the slide. The tumor 
purity of each sample was the average level of purities in both top and bottom slides. For 
quality control, a random review of 20% of slides was conducted by a second pathologist 
to confirm the results. If the results of the second review were off by 10%, the sample 
would be assessed again. 

Treatment, follow up of patients and collection of clinical data 

Before surgery, patients were systemically assessed by CT of the neck, chesk and 
upper abdomen, endoscopy, and PETCT for accurate staging. They were staged by 
experienced oncologists following the AJCC cancer staging manual and underwent 
esophagectomy, without receiving neoadjuvant therapy due to patients’ refusal or poor 
physical condition. The surgical procedures included right-sided transthoracic approach 
(McKeown or Ivor-Lewis) and left-sided transthoracic approach (Sweet), with minimally 
invasive or open techniques. As the guidelines recommended, patients with pathological-
validated lymph node metastasis received adjuvant chemotherapy, radiochemotherapy or 
surveillance according to patients’ choice. Patients were followed up through regular 
outpatient service four times per year within the first year after surgery, twice per year 
from the second to the fifth year, and once a year after the fifth year. Regular examination 
included physical examination, routine blood and biochemical examination, tumor 
biomarkers (SCC and CEA), endoscopy and CT. Patients were given chemotherapy or 
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radiochemotherapy following the clinician’s recommendations if they experienced disease 
relapse. Demographic and clinical data were extracted from our clinical database.  

Clinical endpoint data was prepared following the commonly used criteria1. Disease 
free survival (DFS) is defined as the period from the date of surgery to the date of the first 
tumor recurrence event with radiological or pathological confirmation. The censored time 
is from the date of surgery to the last contact date or date of death. Overall survival (OS) 
is the period from the date of surgery until the date of death at any cause. The censored 
time is from the date of surgery to the date of the last contact. Comprehensive pathological 
staging was conducted by experienced clinicians following the  8௧௛ edition of the AJCC 
cancer staging manual. 

Gene panel design and sequencing 

Mutation data were downloaded from supplementary materials of published results2-

9. Major information of these studies was summarized in Table S1. Then we calculated
mutation frequency for each gene based on 589 WGS/WES data. We brought genes with
mutation frequency above 2% into our panel list. Ultimately, all exons of 548 selected genes
covering 5.731 Mbp were used to design complementary probes for library construction
(Table S9).

AllPrep DNA Universal Kit was used to extract DNA from frozen fresh tissues 
(purity>50%, median: 70%). DNA was quantified and quality controlled by Qubit 2.0 and 
Agarose gel electrophoresis assay prior to library construction. DNA was broken into 180-
280 bp and all exons of 548 genes were captured using Agilent SureSelect XT Custom Kit. 
After PCR amplification and quality control, the DNA library was sequenced using paired-
end 150 bp on Illumina Novaseq 6000 platform. 

Reads alignment and Variant calling 

Clean reads were obtained after filtering out low-quality reads and adapters from raw 
reads of both the tumor and normal samples. The clean reads were aligned to human 
reference genome b37 using BWA10 and deduplicated using SAMBAMBA11. Mutect2 was 
used to identify variants in 201 ESCC samples12. All 48 normal samples were pooled into 
a normal panel for filtering potential germline variants. All variants were annotated using 
ANNOVAR13. To account for the absence of matched control, a custom variant sifting 
pipeline was developed, using criteria similar to previous studies14-16:  

(1) Removal of variants located within low-coverage (<10X) regions and variants with
less than 5 mutant reads.

(2) Removal of variants whose allele fraction is 1
(3) Removal of variants with synonymous amino acid alterations on all transcript

corresponding to each gene.
(4) For variants with well-characterized annotation in COSMIC17, removal of known

polymorphisms reported among 1000 Genome, Exome Aggregation Consortium
data18 or in-house database at a frequency above 0.1
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(5) For variants without annotation in COSMIC, removal of variants recorded in
dbSNP, variants with a frequency above 0.003 in 1000 Genome data, variants with
a frequency above 0.01 in in-house database and variants with frequency above
0.001 in Exome Aggregation Consortium data18

(6) Removal of germline variants present in any of normal panel.
After filtering the probable germline variants, the remaining mutations were used for 
further analysis in our study. 

Copy number analysis 

Copy number alterations were identified using CNVkit19 which was designed specific 
for targeted sequencing data. In brief, the read counts of 48 normal samples were 
normalized and integrated into a pool reference. Then targeted reads and nonspecifically 
captured off-target reads from tumor samples were used to infer somatic copy number 
alterations. The algorithm also adjusted the bias that led to sequencing read depth: GC 
content, target size, repetitive sequences. Copy number alterations (CNAs) were inferred 
following default parameters and adjusted by tumor purity. Amplification was defined as 
≥4 copies and deletion was defined as 0 copy. 

 Sanger sequencing 

 110 mutations were randomly selected for validation. Because the common detection 
threshold of mutations by Sanger sequencing is 10% of VAF20, we filtered 59 mutations 
with a frequency of over 10%. Among these mutations, 3 mutations were excluded due to 
the difficulty of PCR amplification. Finally, Sanger sequencing succeed in 56 cases. 98.2% 
(55/56) of mutations detected by NGS were verified by Sanger sequencing (Table S2). 
Sequences of primers would be available upon request. Examples of Sanger sequencing 
validation are shown in Figure S8.  

Estimation of cancer cell fraction and inference of clone status 

 Following the algorithm described previously21, 22, we computed the posterior 
probability distribution over cancer cell fraction (CCF) of mutations to estimated their 
clone status. Let 𝑏 denoted the number of reads supporting such mutation, 𝑑 denoted the 
total reads covering the mutation locus, 𝜌  referred to the tumor purity,  𝑐௧  and 𝑐௡ referred to the copy number of the gene locus at that base in the tumor and normal 
genome respectively. The expected allele-fraction 𝑓(c) of a mutation present in one copy in 

a fraction c of cancer cells was calculated by 𝑓(c) = 𝑐 ∗ ఘ(ଵିఘ)௖೙ାఘ௖೟, with 𝑐 ∈ [0.01,1]. Then 

P(c) ∝ Binomial(b|d, 𝑓(𝑐)) assuming a uniform prior on c. The distribution over CCF was 
obtained by calculating values over a regular grid of 100 c values and normalizing. 
Mutations were classified as clonal on the ground of the probability that the CCF exceed 
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0.9. A probability threshold of 0.5 was used in our study. 
To infer the proportion of tumor cells carrying a given mutation, we used the 

following formula23, 24: CCF = min ቀ1, ௕ௗ ∗ (ଵିఘ)௖೙ାఘ௖೟ఘ ቁ 
 To test whether a gene exclusively was mutated as clonal or subclonal status, a 
binomial model was applied considering the ratio of clonal mutations to all mutations as 
the probability of success. 

Classification pipeline for CCF-based pattern with influence on prognosis 

Accounting for the existence of tumor heterogeneity, we hypothesized that mutations 
in a specific gene may have distinct impacts on patient prognosis owing to distinct cancer 
cell fractions of mutations. We built a classification pipeline based on the genes mutated 
at frequency ≥5% that integrated maximally selected rank statistics which detected optimal 
cutoff of biomarker on prognosis, Cox regression and log-rank test (Figure S8). R packages 
“survival” and “survminer” were used to calculate logrank statistics. 
 We first applied maximal selected rank statistics for each gene to determine the CCF 
cutoff that offered an optimal prediction of clinical outcomes. Then we used Cox 
regression and Wald test for each gene considering CCF of mutations as continuous 
variables to test whether mutations affected prognosis in a dose-dependent manner. For if 
P-value in Wald test ≤0.1, we judged the effect of mutations were continuous. These genes
were classified into CCF dose-dependent manner when log-rank test between mutant and
wide type was significant (P≤0.05). If 𝑃ௐ௔௟ௗ＞0.1 whereas 𝑃௅௢௚ି௥௔௡௞ between mutant and
wide type was ≤0.05, and  𝑃௅௢௚ି௥௔௡௞ between clonal and subclonal mutations was ＞0.05,
these genes were classified into CCF-independent pattern, as all mutations within a gene
affected patient prognosis similarily, even those mutations with low CCF. As for those
genes which 𝑃௅௢௚ି௥௔௡௞ between mutant and wild type was ＞0.05, then we performed
log rank test based on the cutoff derived from maxstats (mutant≥ cutoff VS mutant＜
cutoff/wild type). If P-value was ≤ 0.05, then these genes were classified as CCF-dominant
pattern, implying threshold effects of mutations on patient prognosis.
 Ultimately, the classification was displayed and visually inspected by plotting 
survival curves. Through visual inspection, AHNAK was seemingly an outliner of 
ouralgorithms. Patients with AHNAK mutations had better OS than wild type patients. 
AHNAK was assigned into CCF independent pattern in the algorithm, but we still 
observed significant difference between clonal AHNAK mutations and subclonal 
mutations, indicating that the prognostic effect of AHNAK mutations actually followed a 
CCF-dominant pattern (Figure S7d). 

Comparison of model construction using CCF data and genotype data 

 The CCF data were continuous and might be more informative than the discrete 
genotype data. To evaluate whether the use of CCF data has advantages in construction of 
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prognosis predictors, we used stability selection to evaluate the importance of a variable 
and the performance of predicting outcomes in both types of data.  
 Stability selection used a bootstrap-based methodology to evaluate the probability 
that a variable would be selected in different bootstrap-based populations. A higher 
probability indicated that the variable was more informative in predicting outcomes. 
 First, CCF and mutation status per gene per patient were assembled into a gene-
sample matrix, respectively. Second, we subsampled the patients, selected variables using 
three popular methods (Least Absolute Shrinkage and Selection Operator, Lasso, 
Smoothly Clipped Absolute Deviation, SCAD and Minimax concave penalty, MCP). 
Finally we calculated the proportion that a variable was selected across all subsample 
simulations using package “hdi”. Variables whose selection probabilityover 0.5 was 
considered as “stably selected variable”. A higher proportion indicated that a variable 
(gene mutation) was stably selected. Then we constructed the Cox model using the most 
N probably selected variables, and assess the model performance. 
 The use of CCF data could lead to more stably selected variables compared to the use 
of the genotype data (Figure S6 A/B/C). In addition, the use of CCF data could achieved 
better model performance (Figure S6 D/E/F). 

Model construction and evaluation 

 A predefined training and validation set were used for model construction and 
validation. CCF of mutations per gene per patient was assembled into a matrix. For 
patients without mutations in specific genes, the CCF referred to 0. The clinical endpoint 
we used was disease free survival (DFS). SCAD, a popular variable selection method 
fulfilling oracle property and providing unbiased coefficient estimation in cox proportion 
hazards context25, 26, was performed (package: ncvreg) to select variables from the high 
dimensional matrix. The variables were further filtered by performing the stepwise Cox 
regression with Bayesian information criteria for the purpose of selecting independent 
factors significantly associated with DFS. A genetic risk score was the coefficients in the 
Cox model multiplying by CCF of mutations in each patient. To reach the maximal power 
of recurrence risk stratification, the optimal cutoff of genetic risk scores was calculated by 
recursive partition analysis (package: party). 

We considered three scenarios for prognosis prediction: a. standard 𝐴𝐽𝐶𝐶଼௧௛ 
pathological stage; b. genetic variables selected above; c. standard pathological stage in a 
combination of genetic variables. Data of validation set was used for evaluation of model 
fitted in the training set. The prognostic accuracies of each variable and scenario of model 
were evaluated using time-dependent receiver operating characteristics (ROC) curves27 
(package: timeROC). Area under the ROC curves (AUC) were compared using Z-test28. 
To minimize the selection bias given the nature of our single center retrospective study, 
we further validated our predictor on the TCGA-ESCC cohort (the only available 
published cohort which provided omics data and date of disease progress). Only patients 
with detailed follow up record and pathological stage were used for validation. Briefly, 
the mutation profile, gene-level copy number and pathology-based tumor purity were 
used to calculate the cancer cell fraction of mutations as described above. Then the CCF of 
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mutations per gene per patient were assembled into a matrix for validation of the 
performance of our predictor. Several packages, including “ggplot2”, “ggsci”, “ggtheme”, 
“survival”, “maftools” and “trackviewer” was used for data visualization. To visualize the 
mutation profile of genes, the protein sequence annotations were downloaded from the 
Uniprot database (https://www.ebi.ac.uk/proteins/api/). 

Clustering analysis of mutations using Bayesian Dirichlet Process 

We employed Bayesian model-based clustering using package “DPClust” to assign 
mutations into subclonal cell populations. The mathematical details have been described 
elsewhere24. WES data of 96 ESCC patients in TCGA cohort was used to compare the global 
tumor heterogeneity in our cohort and the TCGA cohort. For both the TCGA and our 
cohorts, the mutation profile, gene-level copy number and tumor purity (percent of tumor 
nuclei calculated by pathological assessment) were processed as the input of the Bayesian 
Dirichlet Process. 

To predict the number of subclones, the results from the clustering algorithm were 
processed as below29. Briefly, we obtained the parameters of distributions by calculating 
the fractions of times each number of subclones inferred by the Bayesian Dirichlet process. 
For those subclones that harbor more than one mutation, have expected CCF ≥0.1, with 
sample purity ≥0.7, we simulated 2000 trials under the distributions above and calculated 
the total number of subclones observed in patients in each draw. To generate Fig 1c, we 
calculated the mean and standard deviation across the trials. 

SUPPLEMENTARY FIGURE 

Figure S1. Diagram of sample selection. 
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Figure S2. Comparison between training cohort and validation cohort. (A/B) 
Survival curves of DFS (A) and OS (B) between training and validation set. P value 
was calculated with log rank test. (C) Distribution of allele frequency of 
mutations in training and validation cohort. (D) Predicted number of subclones 
in pN0 and pN+ ESCC in TCGA dataset. (E) Predicted number of subclones in pN+ 
ESCC in our cohort and TCGA dataset. 
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Figure S3. Clinical relevance of genetic features. (a) Correlation between tumor 
mutation burden (TMB) and clinical characteristics. P value was calculated with 
wilcoxon rank sum test. (b) Volcano plot displayed the relationship between genetic 
alterations and OS. The X and Y axes indicated the 𝒍𝒐𝒈𝟐𝑯𝑹 and −𝒍𝒐𝒈𝑷𝟏𝟎, 
respectively. 

Figure S4. Survival curves of patients grouped by mutation status of genes. P 
values were calculated with log rank test. 
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Figure S5. CCF-based patterns of prognostic value. The clinical endpoint analyzed 
here was OS. Prognostic effect of mutations was classified into three patterns 
according to our algorithm: CCF-independent pattern (A), CCF-dominant pattern 
(B) and CCF dose-dependent pattern (C). HR was calculated using Cox model. 
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Figure S6. Variable selection based on CCF and mutation status data. Variable 
selection and model construction were performed using the CCF and mutation 
status data. (A/B/C) scatter plot displaying the probablity of variables selected by 
three different methods, Lasso (A), SCAD (B) and MCP (C). “Stably selected 
variables” were dotted in red and unstable selected variables were dotted in blue. 
Using CCF data yielded a higher number of stably selected variables than using 
mutation status data. (D/E/F) Prediction accuracy of the model using the most N 
probably selected variables. Using CCF data could achieve higher AUCs with fewer 
variables than using the mutation status data. 
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Figure S7. Kaplan-Meier Curves for OS of patients with distinct recurrence risks. (A/
B) Patients with different recurrence risks also had distinct overall survival patterns 
in both the training set (A) validation set (B). (C) Survival curves of 𝑵𝟏 patients 
stratified into two groups, high risk group and non high risk group. (D) Survival 
curves of patients grouping by different mutation status of AHNAK. 
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Figure S8. Classification pipeline for distinguishing prognosis effect patterns 
of mutations. The pipeline was constructed using Cox regression, log-rank test and 
maximal selected rank statistics. 
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Figure S9. Examples of Sanger sequencing validation. The germline variant 
presented in T932 was filtered by our bespoke pipeline. 

Figure S10. Lillipop figures displaying distribution of mutations of the eight 
genes included in the recurrence predictors.
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Table S1. Summarization of studies used for designing our gene panel. EAC and ESCC are the abbreviation of esophageal 
adenocarcinoma and squamous cell carcinoma. 
Author Year Samples Geographic origin Sequencing

technique 
Median 
Depth 

Agrawal, N., et al. 2012 EAC(11 cases) and ESCC(12 
cases) 

Maryland, America WES 157X 

Gao, Y. B., et al. 2014 ESCC with paired normal 
tissues 

Beijing,China WES(113 cases) 122X

Lin, D. C., et al. 2014 ESCC with paired normal 
tissues 

Beijing,China WGS (20 cases) 79X 
WES (119 cases) 111X 

Song, Y., et al. 2014 ESCC with paired normal 
tissues 

Chaoshan high incidence area of ESCC,China WGS (17 cases) ＞30X 
WES (141 cases) ＞100X 

Zhang, L., et al. 2015 ESCC with paired normal 
tissues 

Taihang Mountains high incidence area of 
ESCC,China 

WGS (14 cases) 65X 

WES (90 cases) 132X 
Qin, H. D., et al. 2016 ESCC with paired normal 

tissues 
Guang zhou,China WGS (10 cases) 70X 

WES (60 cases) 
Sawada, G., et al 2016 ESCC with paired normal 

tissues 
Japan WES(144 cases) 120X

Dai, W., et al. 2017 ESCC samples Hong Kong,China WES(cases) 80X 
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Table S3. Clinical variables associated with gene mutations. P value are calculated with 
Fisher’s exact test with Bonferroni-Holm correction for multiple comparison. 

Clinical 

variables 
Gene 

Mutation frequency(VS no risk 

factor) 
FDR value 

smoking 

EP300 22.4% (27/129) VS 9.7% (6/72) 0.028 

CASZ1 7.0%(9/129) VS 0% 0.028 

MYH4 11.6% (15/129) VS 2.8% (2/72) 0.034 

drinking 

FAT1 25.3% (25/99) VS 11.8% (12/102) 0.018 

ADAM29 7.1% (7/99) VS 0.9% (1/101) 0.033 

EP300 22% (22/99) VS 10.8% (11/102) 0.036 

age >60 years 

TET2 14.7% (16/109) VS 4.3% (4/92) 0.017 

FBXW7 2.1% (2/92) VS 11.0% (12/109) 0.023 

CREBBP 8.7% (8/92) VS 19.3% (21/109) 0.043 

pN2-3 MYO7B 11.8% (12/102) VS 3.0% (3/99) 0.029 

DNAH9 15.7% (16/102) VS 6.0% (6/99) 0.041 

female 
LOXHD1 17.1% (6/35) VS 3.6% (6/166) 0.007 

ABCC9 14.3% (5/35) VS 3.0% (5/166) 0.016 
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Table S8. Probability of the right genes being selected into the CCF-based 
predictor during 1000 simulations.

Gene Lasso-Cox (%) SCAD-Cox (%) MCP-Cox (%) 

GPR98 48.5 48 39.5

LAMA1 19 19.5 26.5

IFT140 12.5 14 15.5

MUC17 15 18.5 18.5

PTPRB 40 45.5 53.5

AHNAK 100 100 100 

PREX2 96.5 97 95

SPATA31D1 43 48 44 
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