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Tables 

Table S1. Gene panel summary. Genes covered in panel for targeted sequencing. 

Link: 
https://docs.google.com/spreadsheets/d/1qDc3VQg64OC_sPz6EN7Ibzc0xJ9fdeC_/edit?usp=sharing&o
uid=103983408576558021742&rtpof=true&sd=true 

Table S2. Description of the feature engineering used for Random Forest Classifier: We created and 
compared several feature sets that differed in the granularity of information about mutations as well as 
ways that this information was transformed. The basic sets contain information about the presence or 
absence of mutations in the relevant genes (set called “Gene”) or are based on information about the 
severity of mutations, encoded in Variant Effect Predictors (sets called “VEP”)1. The VEP scores have 
four possible values: LOW, MODERATE, HIGH and MODIFIER, the information provided in GDC. The 
first three values reflect the severity of mutation (e.g. a frameshift mutation will have a HIGH score, 
while missense mutations MODERATE). The last value is assigned to mutations of unknown 
significance. In total, five feature sets based on VEP scores were produced. To improve the classification 
performance, we also used two additional approaches to enrich the data with external information about 
the functional context in which the genes operate. In the first approach, we used Gene Ontology (GO, 
http://geneontology.org/) to map information about mutations to respective functional groups, at 
different levels of abstraction2. In the second approach, we used The SIGnaling Network Open Resource 
(SIGNOR, http://signor.uniroma2.it) – signaling models of oncogenesis to aggregate information about 
mutations along the relevant pathways3. 

Link: 
https://docs.google.com/spreadsheets/d/1vTkzAa-BIN-
yVTG6C_xw6nd4JIjcbP1r/edit?usp=sharing&ouid=103983408576558021742&rtpof=true&sd=true 

Table S3. Ranges of Extremaly Randomized Trees (ERT) hyperparameters values used in this study. The 
first 3 hyperparameters control the size of the individual trees. The max. features hyperparameter 
controls the number of features used in training of individual trees: if it is 1.0 then all features are used 
by every tree, otherwise a random sample is drawn for each tree independently, with the sample size 
equal to sqrt(nfeatures) or log2(nfeatures). The n_estimators hyperparameter which controls the forest 
size, was kept at 100 in initial finetuning and was only optimized in the subsequent stages to limit the 
computional cost. The values of two bottom hyperparameters had been assigned without finetuning. 
The rest of the forest hyperparameters’ values were kept at default Scikit-Learn values. 

Link: 
https://docs.google.com/spreadsheets/d/1DWVTUHkqGb933lVL5cg_1tTD1sJAtkoZ/edit?usp=sharing
&ouid=103983408576558021742&rtpof=true&sd=true 

Table S4. TEPs sample list. Samples used for platelet classification, where the imPlatelet classifier was 
used 1. 

Link: 
https://docs.google.com/spreadsheets/d/1PnOXjGQna83bHSiNrfZiXykAzA7hanli/edit?usp=sharing&
ouid=103983408576558021742&rtpof=true&sd=true 
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Table S5. ctDNA and primary EC sample list. Samples used for ctDNA and primary tumor classification 
where Random Forest Classifier was used. The model training was based on the data of 519 patients 
with EC, downloaded from the Genomic Data Commons (GDC) Data Portal. Patients’ characteristics are 
available in Table 2. The data were randomly split (80:20) into the cross-validation set (415) and the test 
set (104), using stratification to ensure equal proportion of EC types in these sets. We focused on 
mutations found in the same 71 genes  covered by a commercial cancer gene panel used in vitro part. 

Link: 
https://docs.google.com/spreadsheets/d/1Sfrj3EwM3iS0OFv0RwUetE8krSOMsdj0/edit?usp=sharing&o
uid=103983408576558021742&rtpof=true&sd=true 

Figures 

 
Figure S1. The stages of model development and testing. The top sequence shows the stages of model 
development, culminating in testing on MUG dataset. The bottom sequence shows what differences 
were made in testing on Bolivar et al. data. Bottom part shows which hyperparameters’ values were 
selected at which stage. 

 
Figure S2. The structure of the final model: the final models were trained using a CalibratedClassifierCV 
meta-estimator from Scikit-Learn, with Extremely Randomized Trees (ERT) as base estimators. To train 
and calibrate the model, 5 ERT models were trained on different subsets of the crossvalidation data (blue 
boxes) and the remaining validation set (green boxes) was used for their calibration. The calibration was 
done using a sigmoid function. Predictions done by the model are average probabilities returned by the 
submodels. 
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Figure S3. Performance of models on crossvalidation dataset, grouped by feature 
set. The results were obtained during the first finetuning stage (scheme presented 
above). The boundaries of the boxes show the first and third quartiles of the CV 
ROC AUC; the green line marks the median; the whiskers extend Table 1. 5*(Q3-
Q1) or to the last datapoint if it is within that range. The best feature set (by first 
quartile, or equivalently 25th percentile) was GO 5, vep 4. 
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Figure S4. Results of forest size finetuning for the best hyperparameters set. The shaded region spans 
from the Figure S5. The quality of calibration of the final model on the test set (upper plots) and the 
crossvalidation set (bottom plots). Data were discretized into equally-sized buckets based on the 
predicted probability; for each bucket the fraction of positives (class 2) and mean probability was 
calculated and plotted. 
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Figure S5. The quality of calibration of the final model on the test set (upper plots) and the 
crossvalidation set (bottom plots). Data were discretized into equally-sized buckets based on the 
predicted probability; for each bucket the fraction of positives (class 2) and mean probability was 
calculated and plotted. 
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Figure S6. Results of decision threshold optimization. The threshold was 
optimised on the whole crossvalidation set. 

 
Figure S7. ROC curve for the crossvalidation data with the optimal decision 
threshold. 
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Figure S8. ROC curve for the test data. 

 
Figure S9. Confusion matrix for the test data and the optimal decision threshold. 
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Figure S10. ROC curve for the MUG data. 

 
Figure S11. Confusion matrix for the MUG data and the optimal decision 
threshold. 
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Figure S12. Breakdown plots for the MUG class 2 cases that were incorrectly classified by the final 
classifier. 
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Figure S13. The results of the stability analysis: the distribution of False Negative 
Rate values on the MUG dataset. 
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Figure S14. The quality of calibration of the final model on the test set (upper plots) and the 
crossvalidation set (bottom plots). Data were discretized into equally-sized buckets based on the 
predicted probability; for each bucket Table 2. and mean probability was calculated and plotted. 
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Figure S15. Results of decision threshold optimization. The threshold was 
optimized on the whole crossvalidation set. 

 
Figure S16. ROC curve for the crossvalidation data with the optimal decision 
threshold. 
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Figure S17. ROC curve for the test data. 

 
Figure S18. Confusion matrix for the test data and the optimal decision threshold. 
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Figure S19. The results of the stability analysis: the results were obtained through repeated model training, calibration and testing, using different splits into test and 
crossvalidation data (1000 times in total); cv_ - scores on the full crossvalidation set; test_ - scores on the test set; hosp_ - scores on the MUG dataset; tpr - True Positive 
Rate; fpr - False Positive Rate; tnr - True Negative Rate; fnr - False Negative Rate. 
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Figure S20. The results of the stability analysis: the distribution of errors among the MUG dataset; no 
errors are shown for the GDC dataset for the sake of clarity. The projection into 2D space was done using 
t-distributed Stochastic Neighbour Embedding. 
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