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Table S1. List of antibiotic agents that are currently being investigated in clinical trials for their effectiveness against different cancer types when alone and/or in combination with 
chemotherapeutic agents as well as antibiotics that are potential new anti-cancer drugs shown to inhibit malignant cells in vivo/in vitro. The summarized data is obtained from clinical-
trials.gov, the National Institute of Health (NIH), the Drugbank, and the ReDo databank. PubMed and Google Scholar have been used to gain detailed information about the mecha-
nism(s) of action of the potential repurposed drugs in vitro and in vivo. The keywords used for the search are “anti-cancer” and “repurposed”. . 

Drug Original Ap-
plication / 
Target 

New Application (anti-cancer) / Proposed Target/Mechanism of Action  Stage of Development 

Clarithromycin 
 

Antibiotic 
Interaction 
with the 50S 
subunit of the 
bacterial ribo-
some – inhibi-
tion of bacte-
rial protein 
synthesis [1] 

Lung cancer:  
-As single treatment:  
 Reduces tumor cell survival [2] 
 Inhibits angiogenesis by inhibition of endothelial cell tube   
 formation [3] 
-In combination: 
 Enhances the effects of Vindesine sulfate and Cisplatin   
 when given 7 days post chemotherapy  Clarithromycin:    
 strengthens the activity of natural killer T-cells and CD8+    
 T cell cytotoxicity, and causes a higher number of INF-ℽ- 
 /IL-4 producing T cells [2] 
Melanoma:  
-As single treatment: 
 Reduces tumor size, suppresses metastases, and increases   
 apoptosis [3, 4] 
-In combination: 
 Induces higher toxicity when Clarithromycin  
(autophagy inhibitor) is used in combination with Bortezomib 
 (proteasome inhibitor) [5]  
 

Clinical Phase II:  
-Neoplasms (NCT02366884) 
-Lymphoma, high dose (NCT01516606,  
 NCT00327132, NCT01264822) 
-Non-squamous cell lung cancer (DB01211) 
 
Clinical Phase II / III: 
-Multiple Myeloma in combination with   
 Pomalidomide, Carfilzomib, Dexamethasone,  
 Lenalidomide, and Thalidomide  
 (NCT01745588, NCT01559935, and NCT02248428)  
 
In vivo: 
-Lewis lung carcinoma (RCB0558) in C57BL/6 mice [2] 
-Melanoma B16BL6 cells in male C57BL mice [4] 
-Adenocarcinoma cells 13762NF in a F-344 rat system [6] 
-Colon cancer cells HCT-116 and LS174T in female nude 
mice [7] 
-Lung cancer cells H157 in male ICR mice [3] 
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Clarithromy-
cin 
(Continued) 

 Lymphoma:  
-As Single treatment: 
 Induces apoptosis, DNA fragmentation, expression of TNFR1, Fas   
 and caspase-3, -8 and -9, as well as the TNF-α system [8] 
Adenocarcinoma:  
-In combination: 
 Increases the therapeutic effect of Carboplatin or   
 Cyclophosphamide [12] 
Spleen cells from tumor bearing rats: 
-As single treatment: 
 Lowers the expression of genes coding for TGF-β and ILK-6 [6] 
Myeloma cells: 
-As single treatment: 
 Inhibits autophagy by fusion of autophagosomes with   
 lysosomes [9] 
-In combination: 
 Enhances Thalidomide’s effect [9–11] 
Breast cancer cells: 
-As single treatment: 
 Blocks autophagy flux [12] 
-In Combination: 
 Enhances Bortezomib’s cytotoxicity [12]  
Colon cancer: 
-As single treatment: Reduces tumor growth and enhances of overall-survival 
in vivo by inducting apoptosis and inhibiting autophagy [7] 

In vitro: 
-Lymphoma cells (300-19) [8] 
-Spleen cells from tumor bearing rats [6] 
-Primary myeloma cells and myeloma cell lines 12PE [9], 
U266, IM-9 and RPMI8226 [5] 
-Breast cancer cell lines MDA-MB-231 and MDA-MB-468 
[12, 13] 
-Lung cancer cells H157 [3] 
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Doxycycline Antibiotic  
Interaction with 
the 16S subunit 
of the bacterial 
ribosomal rRNA 
– inhibition of 
the bacterial pro-
tein synthesis 
[14] 

Cervical cancer:  
-As single treatment: 
 Inhibits proliferation, induces apoptosis, affects oxygen   
 consumption, glycolysis, and reduces ATP levels – targets energy   
 metabolism [15] 
Colon cancer: 
-As single treatment: 
 Inhibits cell growth and induces G0/G1 arrest downregulates   
 matrix metalloproteinase activity [16] 
-In combination: 
 Enhances COX-2 inhibitor’s - antiproliferative and 
 anti-invasive effects [16] 
Breast cancer: 
-As single treatment: 
 Inhibits proliferation and viability, downregulates the expression   
 of stem cell factors (Oct4, Sox2, Nanog and CD44) and autophagy   
 markers (LC-3BI and LC-3BII) [17, 18] 
-In combination: 
 Enhances radiation’s effect by inhibiting DNA-PK, affecting of  
 mitochondrial and glycolydic activity, and blocking different   
 signaling pathways (STAT1/3, Sonic Hedgehog (Shh), Notch,   
 WNT and TGF-β) [19]  
Breast, DCIS, ovarian, prostate, lung, pancreatic, melanoma, and glioblas-
toma: 
-As single treatment: 
 Disrupts mitochondrial biogenesis [20] 

Clinical Phase III: 
-Early-stage Lymphoma (NCT03454945) 
-Cancer overall survival (NCT02201381) 
 
Clinical Phase II: 
-Pancreatic Cancer (NCT02775695) 
-Non-Hodgkin Lymphomas (NCT02086591 
-Cutaneous T-cell Lymphomas (NCT02341209) 
-Marginal Zone Lymphoma of Ocular Adnexal    
  (NCT01820910) 
-Neoplasms (NCT02366884) 
 
Clinical Phase I: 
-Melanoma (NCT01590082) 
 
In vivo: 
-Hela xenograft mouse model [15] 
 
In vitro: 
-Colon cancer cells LS174T and HT29 [16] 
-Breast cancer cells MCF10.DCIS, MCF-7, MDA-MB-468, 
MDA-MB-231, [17] and T47-D [19]  
-Cervical cancer cells [15] 
-Ovarian cancer SKOV3, Tov21G, ES2 [20] 
-Prostate cancer cells P3C [20] 
-Pancreas cancer cells Ma PaCa2 [36] 
-Lung caner cells A549 [36]-Melanoma cells A379 [36] 
-Glioma cells U-87 MG [36] 
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Tigecycline Antibiotic  
Interaction with 
bacterial ribo-
some – inhibi-
tion of protein 
synthesis [21] 

Breast, DCIS, ovarian, prostate, lung, pancreatic, melanoma, and glioblas-
toma: 
-As single treatment: 
 Disrupts mitochondrial biogenesis [20] 
Breast cancer:  
-As single treatment: 
 Inhibits Rb/p53-deficient tumor cell proliferation [22] 
Lung cancer: 
-As single treatment: 
 Inhibits proliferation, increases ROS, inhibits mitochondrial  
 respiration, decrease mitochondrial membrane potential and ATP   
 levels, and induces apoptosis [23] 
Neuroblastoma: 
-As single treatment: 
 Inhibits the Akt pathway and induces G1 arrest [24] 
Myeloma: 
-As single treatment: 
 Overexpresses p21, induces G0/G1 arrest, inhibits cell  
 proliferation [25] 
-In combination with the afilomycin A1 (autophagy inhibitor ) 
 Impairs colony formation, induces G0/G1 arrest, downregulates   
 p21, CDK2 and cyclin D1, induces autophagy [26] 
Glioma:  
-As single treatment: 
 Increases miR-199b-5p  HES1 downregulation  affects Akt  
 pathway  inhibits proliferation, induces cell cycle arrest,   
 elevates p21 expression [27] 
 
 
 
 
 
 
 

Clinical trial Phase I: 
-Acute myeloid leukemia (NCT01332786) 
 
In vivo:  
-Triple-negative breast cancer cells in mice [22] 
-Lung cancer cells A549 in SCID mice [23] 
-A355 and MV3 cells in female nude mice [25] 
-SDIC mice with BE2C and SK-N-AS cells [24] 
-Glioma cells U87 in nude mice [27]  
-Myeloma cells RPMI-8226 in NOD/SCID mice [26] 
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Tigecycline 
(Continued) 

 Leukemia:  
-As single treatment: 
 Inhibits mitochondrial biogenesis and function  induction of  
 apoptosis, downregulation of the PI3K-AKT-mTOR pathway   
 induction of autophagy 
-In combination with autophagy inhibitors like 3-Methyladenine or 
 Chloroquine 
 Enhances the anti-cancer effect [28, 29]  
Cervical cancer:  
-As single treatment: 
 Inhibits the Wnt/β-catenin signaling pathway and expression     
 inhibition of proliferation, induction of apoptosis, inhibits  
 colony formation  
-In combination: 
 Enhances Paclitaxel’ effect [30] 

In vitro: 
-Ovarian cancer SKOV3, Tov21G, ES2 [20] 
-Prostate cancer cells P3C [20] 
-Pancreas cancer cells Ma PaCa2 [36] 
-Lung caner cells A549 [36], PC9, H157, and H1975 [23] 
-Melanoma cells A379 [36],  A375 and MV3 [25] 
-Glioma cells U-87 MG [36] U118, and U251 [27] 
-Breast cancer cells MCF10.DCIS, MCF-7, T47D, and MDA-
MB-231 [20]TMCRP1, TMCRP2, TMCRP3, RB400, TC53-120, 
TC53-127, MDA- MB-231, and Hs578T [22],  
-Neuroblastoma: BE2C and SK-N-AS [24] 
-Chronic myeloid leukemia cells [28] 
- Melanoma: RPMI-8226, NCI-H929 and U266 [26] 
-Cervical cancer: Hela cells [30] 

Cefepime Antibiotic  
Inhibition of 
bacterial cell 
wall synthesis 
[31] 

Breast cancer: 
-As single treatment but as a Manganese-Cefepime complex:    
 Inhibits cell proliferation and proteasome activity [32] 
-In combination: 
 Enhances radiation’ effect (radiosensitizer) [33] 
 
 
 
 
 
 
 
 
 
 
 
 

In vivo: 
-Murine melanoma B16.SIY cells in C57BL/6 female mice 
[33] 
 
In vitro: 
-Breast cancer cells MDA-MB-231[32] 
-Melanoma B16.SIY, breast cancer MDA-MB-435 and head 
cancer [33] 
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Ciprofloxacin Antibiotic  
Inhibits bacte-
rial gyrase – 
inhibition of 
the DNA rep-
lication [34–
36] 

Transitional cancer:  
-As single treatment: 
 Inhibits cell growth [37] 
Glioblastoma:  
-As single treatment: 
 Inhibits cell proliferation, induces cell cycle arrest,   
 downregulates glutathione level, induces mitochondrial  
 dysfunction and apoptosis via caspase-3/7 activation [38] 
Breast cancer:  
-As single treatment: 
 Downregulates cell viability, alters the redox signaling   
 pathway, disrupts mitochondrial membrane, induces cell   
 cycle arrest/DNA fragmentation/p53-dependent apoptosis [39] 
Melanoma:  
-As single treatment: 
 Decreases cell viability, induces DNA fragmentation and   
 cell cycle arrest, disrupts mitochondrial membrane, and  
 induces apoptosis [40]  
Colon cancer:  
-As single treatment: 
 Inhibits proliferation, induces cell cycle arrest, and    
 upregulates TGF-β1 [41] 
 
More extensive summary is presented in the review of Yadav and Talwar [42] 
 
 
 
 
 
 
 

In vitro: 
-Transitional cancer cells MBT-2 [37] 
-Glioblastoma cells U87MG [38] 
-Breast cancer cells MDA MB-231 [39] 
-Melanoma cells Colo 829 [40] 
-Colon cancer cells HT-29 [41] 
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Nitroxoline Antibiotic 
Chelates diva-
lent cations  
interrupts RNA 
synthesis [43–
45]  
 

Bladder and breast cancer:  
-As single treatment: 
 Inhibits MetAP2 activity, induces senescence, inhibits  
 endothelial tube formation, reduces micro-vessel density   
 decrease angiogenesis [46] 
Lymphoma, leukemia, pancreatic cancer:  
-As single treatment: 
 Induces ROS, an effect that is enhanced in presence of   
 copper [47] 
Prostate cancer:  
-As single treatment: 
 Inhibits AMPK- mTOR-p70S6K signaling pathway and  
 cyclin D1-Rb-Cdc25A axis  leading to cell cycle arrest  
 and apoptosis [48] 
Glioma: 
-As single treatment: 
 Inhibits cell growth, induces cell cycle arrest and apoptosis   
 via caspase 3 and poly (ADP-ribose) polymerase cleavage [49] 
Multi cancer types investigation:  
-As single treatment: 
 Inhibits cell proliferation [50] 

In vivo: 
-Breast cancer cells HCC1954 in female athymic nude mice 
[46] 
-Bladder cancer cells KU7 in female athymic nude mice 
[46] 
-Bladder cancer cells 5637 and T24 in nude mice [50] 
-Renal tumor cells KCC853 in mice [50] 
-Mouse glioma model [49]  
 
In vitro: 
-Bladder cancer cells KU7 [46]   
-Breast cancer cells HCC1954 [46] 
-Lymphoma Raji [47] 
-Leukemia HL-60 [47] 
-Pancreatic cancer Pan-1 [47]  
-Broad spectrum cancer analysis, among them HUVEC, 
HepG2, A549, LoVo, MCF7, T24, 5637 and J82 cells [50]  
-Prostate cancer PC-3, DU-145 and LNCaP cells [48] 
-Glioma cells U87 and U251[49] 

Fleroxacin Antibiotic  
DNA damage – 
inhibition of 
topoisomerase  
[34, 51] 

Transitional cancer: 
-As single treatment: 
 Inhibition of cell proliferation [37] 
 
 

In vitro: 
-Transitional carcinoma cells MBT-2 and T24 [37] 

Cephalexin 
Cefaclor 
Cephradine 
Cefixime 
 

Antibiotics 
Inhibition of 
bacterial cell 
wall synthesis 
[71–75] 
 

Melanoma, breast cancer: 
-In combination 
 Enhances radiation’ effect (radiosensitizer) [33] 
  
 

In vivo: 
-Murine melanoma B16.SIY cells in C57BL/6 female mice 
[33] 
In vitro: 
-Breast cancer [33] MDA-MB-435 (Cephalexin) 
-Melanoma B16.SIY, breast cancer MDA-MB-435 and head 
cancer [33] (Cefaclor) 
-Breast cancer MDA-MB-435 and head cancer [33] (Cephra-
dine/Cefixime) 
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Minocycline  Antibiotic (also 
known as an 
anti-inflamma-
tory drug [52])   
 
Inhibits protein 
synthesis [53] 

Ovarian cancer: 
-As single treatment: 
 Inhibits cell and colony formation, induces cell-cycle arrest   
 with a downregulation of cyclins A, B, and E and   
 suppression of DNA synthesis, induces caspase-3 and   
 PARP-1 cleavage, inhibits in vivo angiogenesis and tumor  
 growth [54]  
 Suppresses IL-6 expression, modulates the IL-6 receptor  
 System, and suppresses TGF-β1-TAK1-IκB signaling [55, 56]  
Breast cancer:  
-In combination with Celecoxib:  
 Inhibits cell growth, decreases micro-vessel density, lowers   
 the expression of vascular endothelial growth factor   
 (VEGF) and matrix metalloproteinase (MMP)-9 [57] 
Glioma:  
-As single treatment: 
 Inhibits cell growth, inhibits membrane type 1 (MT1-MMP) expression in 
malignant cells [58]  
Induces autophagy mediated cell death [59]  
 
 
 

In vivo: 
-Ovarian cancer OVCAR-3 cells in female nude mice [55, 
56, 60]  
-Breast cancer cells MDA-MB-435S in nude mice [57] 
-Glioma cells GL261 in wild type C57BL/6 mice [58] 
 
In vitro: 
-Ovarian cancer cells OVCAR-3, CAOV-3, SKOV-3 and 
A2780 [54–56, 61] 
-Glioma cells U87 and U251 [59] 
 
 

Levofloxacin Antibiotic  
DNA damage – 
inhibition of 
topoisomerase  
[34] 

Breast cancer:  
-As single treatment: 
 Inhibits mitochondrial biogenesis,  and activates  
 PI3K/Akt/mTOR and MAPK/ERK pathways [62] 
-In combination 
 Synergizes 5-Fluorouracil’s effect [62] 
Lung cancer:  
-As single treatment: 
 Inhibits cell proliferation and mitochondrial activity,   
 increases high levels of ROS  oxidative damage induces apoptosis [63] 
A more in depth summary is presented in the review by Yadav and Talwar 
[42] 

In vivo: 
-Breast cancer cells MCF-7 or MDA-MB-231 in SCID mice 
[62] 
-Lung cancer cells H460 in SCID mice [63] 
 
In vitro:  
-Breast cancer cells MCF-7, MDA-MB-231, MDA-MB-468 
and SkBr-3 [62] 
-Lung cancer cells A549, H3255, NCL-69, H460 [63]  
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Enoxacin Antibiotic  
DNA damage – 
inhibition of 
topoisomerase  
[34, 67] 
 

Prostate cancer: 
-As single treatment: 
 downregulates cell viability, induces cell cycle arrest and  
 apoptosis, inhibits invasion, restores global miRNA   
 expression (malfunctional in prostate cancer) [68] 
Cervical cancer:  
-As single treatment: 
 Inhibits cell growth, induces apoptosis via caspase-9, -3  
 and -7 activation, upregulates p21, SNF, PUMA NOXA,  
 and BAF mRNA expression [69] 
 -In combination: 
  Synergizes Epigallocatechin Gallate’s effect [69] 
Breast cancer:  
-As single treatment: 
 Inhibits cell proliferation, alters cellular morphology, and  
 induces cell cycle arrest [70] 
More data is summarized in the review by Yadav and Talwar [42] 

In vitro:  
-Prostate cancer cells DU145, LNCaP, VCaP and PC-3 [68] 
-Cervical cancer cells HeLa, C33A, and WI-38 [69] 
-Breast cancer cells MCF-7 [70] 

Moxifloxacin Antibiotic  
DNA damage – 
inhibition of 
topoisomerase  
[34, 64] 

Glioblastoma:  
-As single treatment: 
 Inhibits cell proliferation, induces cell cycle arrest,  
 downregulates glutathione level, and induces    
 mitochondrial dysfunction and caspase dependent   
 apoptosis [38] 
Pancreatic cancer: 
-As single treatment: 
 Inhibits cell proliferation, induces cell cycle arrest,   
 downregulates p27, p21, CDK2, cyclin-A and cyclin-E   
 expression, activates caspase-8, 9, 3 via  Bid and ERK 1/2 [65] 
Breast cancer: 
-As single treatment: 
 Inhibits cell proliferation, induces apoptosis by a Cu-  
 moxifloxacin complex (and nitrogen adducts) [66] 
 

In vitro: 
-Glioblastoma cells U87MG [38] 
-Pancreatic cancer cells MIA PaCa-2 and Panc-1 [65] 
-Breast cancer cells MCF-7, T47D, MDA-MB-231, and BT-
20 [66] 
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