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Supplementary Method 
1. CT acquisition 

Parameter Institution 1 Institution 2 

Scanner 
Aquilion TSX-101A (Toshiba Medical 
Systems, Tokyo, JP) or Discovery 750 
HD (GE Healthcare, Milwaukee, WI) 

Discovery VCT, GE Healthcare (GE 
Healthcare, Milwaukee, WI) 

Dose of iodinated CT contrast agent 1.5 ml/kg 100 mL 
Injection rate of iodinated CT contrast 

agent 2.5 ml/s 3 ml/s 

Slice thickness (mm) 2.5 (median) 5 (median) 
Tube voltage (kVp) 120 120  
Tube current (mA) 200-400 200-300 

 
2. Pathologic Analysis 
Pathologic complete response (pCR) was defined as no evidence of residual tumor cells in the primary site 
and resected lymph nodes of the operative specimens. For institution 1, reports on pathologic examination 
contained the tumor type and extension, proximal and distal resection margins, tumor regression grade, and 
lymph node status. For institution 2, pathological report also described the circumferential resection. 
 
3.Radiomics Feature definitions 
Handcrafted radiomics features were computed from the radiologist-drawn ROIs using an open-source py-
thon package PyRadiomics [1]. Detailed calculations of handcrafted radiomics features are described and 
provided in online documentation of PyRadiomics (https://pyradiomics.readthedocs.io/en/latest/fea-
tures.html). The resampled voxel sizes were set to 1× 1 × 5 mm³ voxels to standardize the slice thickness. 
Image intensities were binned by 25 HU and voxel array shift were set on 1000. Segmented voxels were 
resampled at the range of 50 to 400 HU including the whole tumor and excluding the air and bone tissues. 
Defined radiomic image features without/after wavelet filtration that described tumor characteristics were 
extracted. Wavelet filtration filtered original image directionally with x, y and z directions respectively (H: 
High pass filter, L: Low pass filter), yielding 8 different combinations of decompositions. The extracted ra-
diomics features can be divided into 3 groups: (I) first-order statistics, (II) shape features, and (III) second-
order features. Most features defined below were in accord with feature definitions as described by the Im-
aging Biomarker Standardization Initiative (IBSI), which were available in a separate document by 
Zwanenburg et al.[2].  
 
4.1. First Order Features 
First-order statistics describe the distribution of voxel intensities within the image region defined by the 
mask through commonly used and basic metrics. 
 
Let: 
 𝐗 be a set of 𝑁𝑝 voxels included in the ROI 
 𝐏(𝑖) be the first order histogram with 𝑁𝑔 discrete intensity levels, where 𝑁𝑔 is the number of non-zero 

bins, equally spaced from 0 with a width defined in the bin width parameter 
 𝑝(𝑖) be the normalized first-order histogram and equal to 𝐏(𝑖)/𝑁𝑝 

 
1) Median 
The median gray level intensity within the ROI. 
 
2). Skewness 



 
Skewness measures the asymmetry of the distribution of values about the Mean value. Depending on 
where the tail is elongated and the mass of the distribution is concentrated, this value can be positive or 
negative. 
 
4.2 Second-Order Features 
A. Gray Level Co-occurrence Matrix (GLCM) Features 
A Gray Level Co-occurrence Matrix (GLCM) [3] of size 𝑁𝑔×𝑁𝑔 describes the second-order joint probability 
function of an image region constrained by the mask and is defined as 𝐏(𝑖,𝑗|𝛿,𝜃). The (𝑖,𝑗)th element of this 
matrix represents the number of times the combination of levels 𝑖 and 𝑗 occur in two pixels in the image, 
that are separated by a distance of 𝛿 pixels along angle 𝜃. The distance 𝛿 from the center voxel is defined as 
the distance according to the infinity norm. For 𝛿=1, this results in 2 neighbors for each of 13 angles in 3D 
(26-connectivity) and for 𝛿=2 a 98-connectivity (49 unique angles). 
As a two dimensional example, let the following matrix 𝐈 represent a 5x5 image, having 5 discrete grey lev-
els: 

 
For distance 𝛿=1 (considering pixels with a distance of 1 pixel from each other) and angle 𝜃=0∘ (horizontal 
plane, i.e. voxels to the left and right of the center voxel), the following symmetrical GLCM is obtained: 

 
Let: 
 
 𝜖 be an arbitrarily small positive number (≈2.2×10−16) 
 𝐏(𝑖,𝑗) be the co-occurence matrix for an arbitrary 𝛿 and 𝜃 
 𝑝(𝑖,𝑗) be the normalized co-occurence matrix and equal to 𝐏(𝑖,𝑗)∑𝐏(𝑖,𝑗) 
 𝑁𝑔 be the number of discrete intensity levels in the image 
 𝑝𝑥(𝑖)=∑𝑁𝑔𝑗=1𝑃(𝑖,𝑗) be the marginal row probabilities 
 𝑝𝑦(𝑗)=∑𝑁𝑔𝑖=1𝑃(𝑖,𝑗) be the marginal column probabilities 
 𝜎𝑥 be the standard deviation of 𝑝𝑥 
 𝜎𝑦 be the standard deviation of 𝑝𝑦 
By default, the value of a feature is calculated on the GLCM for each angle separately, after which the mean 
of these values is returned. 
 
1). Cluster Shade 

 



Cluster Shade is a measure of the skewness and uniformity of the GLCM. A higher cluster shade implies 
greater asymmetry about the mean. 
 
2). Correlation 

 
Correlation is a value between 0 (uncorrelated) and 1 (perfectly correlated) showing the linear dependency 
of gray level values to their respective voxels in the GLCM. 
 
3). Joint Average 

 
Returns the mean gray level intensity of the 𝑖 distribution. 
 
B. Gray Level Dependence Matrix (GLDM) Features 
A Gray Level Dependence Matrix (GLDM) quantifies gray level dependencies in an image.[4] A gray level 
dependency is defined as the number of connected voxels within distance 𝛿 that are dependent on the cen-
ter voxel. A neighboring voxel with gray level 𝑗j is considered dependent on center voxel with gray 
level 𝑖 if |𝑖−𝑗|≤𝛼. In a gray level dependence matrix 𝐏(𝑖,𝑗) the (𝑖,𝑗)th element describes the number of times a 
voxel with gray level 𝑖 with 𝑗 dependent voxels in its neighborhood appears in image. As a two-dimen-
sional example, consider the following 5x5 image, with 5 discrete gray levels: 

 
For 𝛼=0 and 𝛿=1, the GLDM then becomes: 

 
 
Let: 
 𝑁𝑔 be the number of discreet intensity values in the image 
 𝑁𝑑 be the number of discreet dependency sizes in the image 

 𝑁𝑧 be the number of dependency zones in the image, which is equal to   
 𝐏(𝑖,𝑗) be the dependence matrix 

 𝑝(𝑖,𝑗) be the normalized dependence matrix, defined as   
 
1). Dependence Variance (DV) 



 
Measures the variance in dependence size in the image. 
 
2). Dependence Non-Uniformity Normalized (DNN) 

 
Measures the similarity of dependence throughout the image, with a lower value indicating more homoge-
neity among dependencies in the image. This is the normalized version of the DLN formula. 
 
C. Gray Level Run Length Matrix (GLRLM) Features 
A Gray Level Run Length Matrix (GLRLM) quantifies gray level runs, which are defined as the length in 
number of pixels, of consecutive pixels that have the same gray level value [5-8]. In a gray level run length 
matrix 𝐏(𝑖,𝑗|𝜃), the (𝑖,𝑗)th element describes the number of runs with gray level 𝑖 and length 𝑗 occur in the 
image (ROI) along angle 𝜃. 
As a two-dimensional example, consider the following 5x5 image, with 5 discrete gray levels: 

 
The GLRLM for 𝜃=0, where 0 degrees is the horizontal direction, then becomes: 

 
Let: 
 𝑁𝑔 be the number of discreet intensity values in the image 
 𝑁𝑟 be the number of discreet run lengths in the image 
 𝑁𝑝 be the number of voxels in the image 
 𝑁𝑟(𝜃) be the number of runs in the image along angle 𝜃, which is equal to  

 and 1≤𝑁𝑟(𝜃)≤𝑁𝑝 
 𝐏(𝑖,𝑗|𝜃) be the run length matrix for an arbitrary direction 𝜃 

 𝑝(𝑖,𝑗|𝜃) be the normalized run length matrix, defined as   
 
By default, the value of a feature is calculated on the GLRLM for each angle separately, after which the 
mean of these values is returned. If distance weighting is enabled, GLRLMs are weighted by the distance 
between neighboring voxels and then summed and normalized. Features are then calculated on the result-
ant matrix. The distance between neighboring voxels is calculated for each angle using the norm specified 
in ‘weightingNorm’. 
 



1). Long Run High Gray Level Emphasis (LRHGLE) 

 
LRHGLRE measures the joint distribution of long run lengths with higher gray-level values. 
 
2). Size-Zone Non-Uniformity Normalized (SZNN) 

 
SZNN measures the variability of size zone volumes throughout the image, with a lower value indicating 
more homogeneity among zone size volumes in the image. This is the normalized version of the SZN for-
mula. 
 
D. Gray Level Size Zone Matrix (GLSZM) Features 
A Gray Level Size Zone (GLSZM) quantifies gray level zones in an image. A gray level zone is defined as 
the number of connected voxels that share the same gray level intensity. A voxel is considered connected if 
the distance is 1 according to the infinity norm (26-connected region in a 3D, 8-connected region in 2D). In a 
gray level size zone matrix 𝑃(𝑖,𝑗) the (𝑖,𝑗)th element equals the number of zones with gray level 𝑖 and 
size 𝑗 appear in image. Contrary to GLCM and GLRLM, the GLSZM is rotation independent, with only one 
matrix calculated for all directions in the ROI [9]. As a two-dimensional example, consider the following 
5x5 image, with 5 discrete gray levels: 

 
The GLSZM then becomes: 

 
Let: 
 𝑁𝑔 be the number of discreet intensity values in the image 
 𝑁𝑠 be the number of discreet zone sizes in the image 
 𝑁𝑝 be the number of voxels in the image 

 𝑁𝑧 be the number of zones in the ROI, which is equal to  and 1≤𝑁𝑧≤𝑁𝑝 
 𝐏(𝑖,𝑗) be the size zone matrix 

 𝑝(𝑖,𝑗) be the normalized size zone matrix, defined as   
 
1). Gray Level Variance (GLV) 



 
GLV measures the variance in gray level intensities for the zones. 
 
E. Neighboring Gray Tone Difference Matrix (NGTDM) Features 
A Neighboring Gray Tone Difference Matrix quantifies the difference between a gray value and the average 
gray value of its neighbors within distance 𝛿. The sum of absolute differences for gray level 𝑖 is stored in the 
matrix. Let 𝐗𝑔𝑙 be a set of segmented voxels and 𝑥𝑔𝑙(𝑗𝑥,𝑗𝑦,𝑗𝑧)∈𝐗𝑔𝑙 be the gray level of a voxel at position (𝑗𝑥,𝑗𝑦,𝑗𝑧).  
 
1). Strength  
Strength is a measure of the primitives in an image. Its value is high when the primitives are easily defined 
and visible, i.e. an image with slow change in intensity but more large coarse differences in gray level inten-
sities. 
3.Statistical analysis 
A two-tailed P value less than 0.05 was defined as statistically significant. The P values for differences in the 
clinical characteristics between cohorts were calculated by Fisher exact test or Chi-square test for categorical 
data, and by Kruskal-Wallis test for numeric data.  Radiomics features were harmonized to reduce the mul-
ticenter effect caused by different scanner and protocol settings. According to the statistical distribution of 
the dataset, nonparametric form of the model was adopted in which ComBat determined the transformation 
for each feature separately using “sva” R package [10]. Feature robustness was tested by intraclass correlation 
coefficients (ICCs) using “irr” R package [11]. Discrimination ability was assessed by Harrell's concordance 
indices (C-index) using “Hmisc” R package [12]. The raw genomic data was preprocessed (background cor-
rection, log2-transformation and quantile normalization) using the Bioconductor package “affy” [13]. The 
“limma” package was applied to detect differentially expressed genes (DEGs) between patients with differ-
ent survival outcome [14]. Cox regression, nomogram construction, and calibration were analyzed by “rms” 
package [15]. The time-dependent ROC curve analysis were generated using “timeROC” package [16]. The 
“survival” [17] package was used for survival analysis and graphics. 
 
 
Supplementary Table S1. The top 10 enriched gene set expression patterns by G:profiler 
 

Term name Term ID 
peptidyl-threonine phosphorylation GO:0018107 
peptidyl-threonine modification GO:0018210 
regulation of peptidyl-threonine phosphorylation GO:0010799 
positive regulation of peptidyl-serine phosphorylation GO:0033138 
positive regulation of ruffle assembly GO:1900029 
negative regulation of ERBB signaling pathway GO:1901185 
positive regulation of protein kinase activity GO:0045860 
positive regulation of otic vesicle morphogenesis GO:1904120 
negative regulation of epidermal growth factor receptor sig-
naling pathway GO:0042059 

regulation of epidermal growth factor receptor signaling 
pathway 

GO:0042058 

 
 
 



 
Supplementary Table S2. The differentially expressed genes analyzed by Limma and overlapped genes for 
genomics feature selection for correlation analysis with radiomics features. 
 

Differentially expressed genes Overlapped genes for genomics feature selec-
tion 

KLK8, STOX1, SPRY2, GPRC5A, 
LINC02549, IGSF10, MED12L, 
SKIDA1, COBL, SNRK, NR3C2, 
ITPK1-AS1, TXNIP, ANKRD26P3, 
EPS8, GPX3, APCDD1L-DT, KLK6, 
M1AP, LINC00606, ZNF483, 
MIR31HG, LINC01904, KIF26B, 
TUBA3FP, IPW, PWARSN, SGCB, 
LOC101928196, CABCOCO1, FGF4, 
TIGD4, PNLIPRP3, LOC105370475, 
PRCP, CYP27C1, CCDC190 

KLK8, STOX1, SPRY2, GPRC5A, IGSF10, COBL, 
TXNIP, EPS8, GPX3, KLK6, M1AP, ZNF483, 
KIF26B, SGCB, FGF4, PRCP 

 
 
 
 
 



Supplementary Table S3. Numbers of selected features for model constructions 
 

Feature selection 
Nomogram 1 (with genomics feature selec-

tion) 
Nomogram 2 (without genomics feature se-

lection) 
Initial    2553 2553 

Inter-observer variability assessment  2336 2336 
Genomics feature selection 1422 Skip 

Data-driven machine learning  feature selection 8 8 
 
 
 
Supplementary Table S4. Description of selected radiomic features in the radiomics models for the construction of nomogram. 
Feature in-

dex Category Stage Filter Type Feature name 
Feature 1 

Nomogram 1 

Pre-nCRT Wavelet (LLH) GLCM Cluster Shade 
Feature 2 Pre-nCRT Wavelet (HLL) GLDM Dependence Variance 
Feature 3 Pre-nCRT Wavelet (HLH) GLRLM Long Run High Gray Level Emphasis 
Feature 4 Post-nCRT Wavelet (LLH) First order Mean 
Feature 5 Post-nCRT Wavelet (HHL) First order Mean 
Feature 6 Delta Wavelet (HHL) GLDM Dependence Variance 
Feature 7 

Nomogram 1 & Nomogram 2 
Post-nCRT Wavelet (HLH) First order Skewness 

Feature 8 Delta Wavelet (LLL) GLCM Correlation 
Feature 9 

Nomogram 2 

Pre-nCRT Wavelet (LLH) First order Mean 
Feature 10 Pre-nCRT Wavelet (HLL) GLDM Dependence Non-Uniformity Normalize
Feature 11 Pre-nCRT Wavelet (HLL) NGTDM Strength 
Feature 12 Pre-nCRT Wavelet (HLH) GLCM Joint Average 
Feature 13 Pre-nCRT Wavelet (HLH) GLSZM Size-Zone Non-Uniformity Normalized
Feature 14 Post-nCRT Wavelet (LLH) GLSZM Gray Level Variance 
* feature 7 and feature 8 were features that were selected for the construction of Rad-score in both nomogram 1 and nomogram 2 



GLCM, Gray Level Co-occurrence Matrix, GLDM, Gray Level Dependence Matrix, GLRLM, Gray Level Run Length Matrix, NGTDM, Neigh-
bouring Gray Tone Difference Matrix, GLSZM, Gray Level Size Zone Matrix 

 
 



Supplementary Figure S1. Flowchart of patient selection 

 
 
Supplementary Figure S2. Correlation between selected radiomics features and the overlapped genes. 
Radiomics features in nomogram 1 were derived from genomics feature selection (Radiomics feature 1 to 8). 
Radiomics features in nomogram 2 without genomics feature selection (Radiomics feature 7 to 14). Feature 
names were listed in Table 2.  

235 patients with locally advanced esophageal
squamous cell carcinoma receiving neoadjuvant

chemoradiation 

101 patients with locally advanced esophageal
squamous cell carcinoma receiving neoadjuvant

chemoradiation 

60 were excluded:
6 had progressed disease before surgery

4 died before surgery
8 pretreatment CT were done in other hospitals

13 medical data were incomplete
29 follow-up information was incomplete

41 eligible patients

106 eligible patients

170 were excluded:
33 declined to receive surgery

10 had progressed disease before surgery
4 died before surgery

21 pretreatment CT were done in other hospitals
5 underwent surgery in other hospitals

1 medical data was incomplete
96 follow-up information was incomplete

65 eligible patients

Institution 1 Institution 2



 
 
 
Supplementary Figure S3. Calibration plot of 3-year and 5-year time-dependent ROC curves in the train-
ing, internal test and external test set. (A, C, E) nomogram 1 with genomics feature selection. (B, D, F) nom-
ogram 2 without genomics feature selection. ROC = receiver operating characteristic 



Supplementary Figure S4. Decision curve analysis of nomograms 
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Supplementary Figure S5. Overall survival for patients from high-risk and low-risk groups stratified by 
nomogram predictions. (A, C, E) nomogram 1 with genomics feature selection. (B, D, F) nomogram 2 without 
genomics feature selection. Kaplan-Meier curves showing disease-free survival in patients stratified by nom-
ogram predictions in the training, internal test and external test set. The difference between the two curves 
was compared by the log-rank test. 
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Supplementary Figure S6. Survival for patients from high-risk and low-risk groups stratified by delta 
radiological features. (A) Delta volume and (B) the delta radiomics feature for the prediction of disease-free 
survival; (C) Delta volume and (D) the delta radiomics feature for the prediction of overall survival. 
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