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Supplementary Table S1. Rotated Component Matrix after Principal Component Analysis for 

writing performance (Rotation method: Varimax). 

 Component 1 

= Writing Accuracy 

Component 2 

= Writing Speed 

Amplitude (%) -0.979 -0.010 

Speed (cm/s) -0.125 0.915 

COVAmpl (%) 0.526 0.639 

Deviation 0.988 0.039 

% Variance explained 57.40 29.45 

 

Component scores were subsequently inverted so that higher scores corresponded to larger 

amplitude, lower variability, and smaller deviation, or in other words, better accuracy. 

Supplementary Table S2. Clinical demographics of all 28 patients with PD as well as the 

comparison between PD+FOG and PD-FOG at baseline. 

 
 All patients 

(n = 28) 
PD+FOG  
(n = 13) 

PD-FOG  
(n = 15) 

p-valuea 

Age (years) 63.93 ± 8.58 65.85 ± 8.17 62.27 ± 8.85 0.279 
Sex (M/F)+ 17/11 10/3 7/8 0.097 
EHI (%) 100 (80; 100) 100 (70; 100) 100 (88.75; 100) 0.555 
H&Y (1-5)+ 2 (2; 2) 2 (2; 2) 2 (2; 2) 0.887 
Disease Duration (years) 6.89 ± 3.93 8.54 ± 4.22 5.47 ± 3.14 0.036* 
LEDD (mg/24h) 641.5 ± 288.47 610 (590; 765) 698.5 (355; 784.5) 0.555 
MDS-UPDRS-III (0-132) 31.14 ± 15.07 36.69 ± 15.55 26.33 ± 13.32 0.069 
MDS-UPDRS-III-UL (0-56) 15.29 ± 7.87 19 (12; 22) 12 (7; 15.5) 0.156 
MAM-16 (0-64) 58 (55; 59) 58 (57; 59) 56 (53.5; 58.5) 0.294 
MMSE (0-30) 29 (28; 29) 28 (28; 29) 29 (29; 29.5) 0.052 
MoCA (0-30) 26.54 ± 1.73 26.69 ± 1.75 26.4 ± 1.76 0.664 
HADS-Anxiety (0-21) 6.32 ± 4.16 6.23 ± 4.19 6.4 ± 4.29 0.917 
HADS-Depression (0-21) 5.29 ± 3.21 6.15 ± 2.85 4.53 ± 3.40 0.187 
Normally distributed variables are displayed as mean ± standard deviation. Non-normally distributed 
variables are presented as median (1st quartile; 3rd quartile). + Variables analyzed with Chi-squared tests. a 
Comparison between PD+FOG and PD-FOG * Significant at p < 0.05 
Abbreviations: EHI = Edinburgh Handedness Inventory; HADS = Hospital Anxiety and Depression Scale; MAM-
16 = Manual Ability Measure; MDS-UPDRS-III = Movement Disorder Society Unified Parkinson’s Disease 
Rating Scale part III; MMSE = Mini-Mental State Examination; MoCA = Montreal Cognitive Assessment; PD = 
Parkinson’s disease; PD+FOG = freezers; PD-FOG = non-freezers; UL = upper limb 
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Supplementary Methods S1 – MRI preprocessing  

Results included in this manuscript come from preprocessing performed using fMRIPrep 1.5.9 
(Esteban, Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which 
is based on Nipype 1.4.2 (Gorgolewski et al. (2011); Gorgolewski et al. (2018); 
RRID:SCR_002502). 

Anatomical data preprocessing 

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 
N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.2.0 (Avants 
et al. 2008, RRID:SCR_004757), and used as T1w-reference throughout the workflow. 
The T1w-reference was then skull-stripped with a Nipype implementation of the 
antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target 
template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) 
and gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 
5.0.9, RRID:SCR_002823, Zhang, Brady, and Smith 2001). Brain surfaces were 
reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale, Fischl, 
and Sereno 1999), and the brain mask estimated previously was refined with a custom 
variation of the method to reconcile ANTs-derived and FreeSurfer-derived 
segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438, Klein et 
al. 2017). Volume-based spatial normalization to two standard spaces 
(MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through nonlinear 
registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions of 
both T1w reference and the T1w template. The following templates were selected for 
spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c 
[Fonov et al. (2009), RRID:SCR_008796; TemplateFlow ID: 
MNI152NLin2009cAsym], FSL’s MNI ICBM 152 non-linear 6th Generation 
Asymmetric Average Brain Stereotaxic Registration Model [Evans et al. (2012), 
RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym]. 

Functional data preprocessing 

For each of the 1 BOLD runs found per subject (across all tasks and sessions), the 
following preprocessing was performed. First, a reference volume and its skull-stripped 
version were generated using a custom methodology of fMRIPrep. A B0-nonuniformity 
map (or fieldmap) was estimated based on a phase-difference map calculated with a 
dual-echo GRE (gradient-recall echo) sequence, processed with a custom workflow of 
SDCFlows inspired by the epidewarp.fsl script and further improvements in HCP 
Pipelines (Glasser et al. 2013). The fieldmap was then co-registered to the target EPI 
(echo-planar imaging) reference run and converted to a displacements field map 
(amenable to registration tools such as ANTs) with FSL’s fugue and other SDCflows 
tools. Based on the estimated susceptibility distortion, a corrected EPI (echo-planar 
imaging) reference was calculated for a more accurate co-registration with the 
anatomical reference. The BOLD reference was then co-registered to the T1w reference 
using bbregister (FreeSurfer) which implements boundary-based registration (Greve 
and Fischl 2009). Co-registration was configured with six degrees of freedom. Head-
motion parameters with respect to the BOLD reference (transformation matrices, and 
six corresponding rotation and translation parameters) are estimated before any 

http://www.nmr.mgh.harvard.edu/%7Egreve/fbirn/b0/epidewarp.fsl
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spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al. 2002). BOLD runs 
were slice-time corrected using 3dTshift from AFNI 20160207 (Cox and Hyde 1997, 
RRID:SCR_005927). The BOLD time-series, were resampled to surfaces on the 
following spaces: fsaverage5. The BOLD time-series (including slice-timing correction 
when applied) were resampled onto their original, native space by applying a single, 
composite transform to correct for head-motion and susceptibility distortions. These 
resampled BOLD time-series will be referred to as preprocessed BOLD in original 
space, or just preprocessed BOLD. The BOLD time-series were resampled into several 
standard spaces, correspondingly generating the following spatially-normalized, 
preprocessed BOLD runs: MNI152NLin2009cAsym, MNI152NLin6Asym. First, a 
reference volume and its skull-stripped version were generated using a custom 
methodology of fMRIPrep. Automatic removal of motion artifacts using independent 
component analysis (ICA-AROMA, Pruim et al. 2015) was performed on the 
preprocessed BOLD on MNI space time-series after removal of non-steady state 
volumes and spatial smoothing with an isotropic, Gaussian kernel of 6mm FWHM (full-
width half-maximum). Corresponding “non-aggresively” denoised runs were produced 
after such smoothing. Additionally, the “aggressive” noise-regressors were collected 
and placed in the corresponding confounds file. Several confounding time-series were 
calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS 
and three region-wise global signals. FD and DVARS are calculated for each functional 
run, both using their implementations in Nipype (following the definitions by Power et 
al. 2014). The three global signals are extracted within the CSF, the WM, and the whole-
brain masks. Additionally, a set of physiological regressors were extracted to allow for 
component-based noise correction (CompCor, Behzadi et al. 2007). Principal 
components are estimated after high-pass filtering the preprocessed BOLD time-series 
(using a discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal 
(tCompCor) and anatomical (aCompCor). tCompCor components are then calculated 
from the top 5% variable voxels within a mask covering the subcortical regions. This 
subcortical mask is obtained by heavily eroding the brain mask, which ensures it does 
not include cortical GM regions. For aCompCor, components are calculated within the 
intersection of the aforementioned mask and the union of CSF and WM masks 
calculated in T1w space, after their projection to the native space of each functional run 
(using the inverse BOLD-to-T1w transformation). Components are also calculated 
separately within the WM and CSF masks. For each CompCor decomposition, the k 
components with the largest singular values are retained, such that the retained 
components’ time series are sufficient to explain 50 percent of variance across the 
nuisance mask (CSF, WM, combined, or temporal). The remaining components are 
dropped from consideration. The head-motion estimates calculated in the correction step 
were also placed within the corresponding confounds file. The confound time series 
derived from head motion estimates and global signals were expanded with the inclusion 
of temporal derivatives and quadratic terms for each (Satterthwaite et al. 2013). Frames 
that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as 
motion outliers. All resamplings can be performed with a single interpolation step by 
composing all the pertinent transformations (i.e., head-motion transform matrices, 
susceptibility distortion correction when available, and co-registrations to anatomical 
and output spaces). Gridded (volumetric) resamplings were performed using 
antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the 
smoothing effects of other kernels (Lanczos 1964). Non-gridded (surface) resamplings 
were performed using mri_vol2surf (FreeSurfer). 
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Many internal operations of fMRIPrep use Nilearn 0.6.1 (Abraham et al. 2014, 
RRID:SCR_001362), mostly within the functional processing workflow. For more details of 
the pipeline, see the section corresponding to workflows in fMRIPrep’s documentation. 

 

 

Copyright Waiver 

The above boilerplate text was automatically generated by fMRIPrep with the express intention 
that users should copy and paste this text into their manuscripts unchanged. It is released under 
the CC0 license. 
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