Supplementary Table S1. PCR array analysis of cytokines/chemokines correlated to neuroinflammation and oxidative stress.

Gene of interest Neuroimmunological purpose References Associated Downregulated Fold
Signaling Pathway | or Upregulated Change
by EGCG t/-
Macrophage Cytokine is implicated in inflammatory processes in [1-3] downregulated Both
migration inhibitory Alzheimer's disease. EGCG
factor (MIF) 150 +LPS
Cytokine C-C motif Cytokine has a major role in amyloidogenesis in [4, 5] NF-«xB downregulated EGCG
ligand 2 (CCL2) aka neurodegenerative disease. 150 +LPS
Monocyte vs LPS
chemoattractant alone
protein-1 (MCP-1) 1.44-fold
decrease
Interleukin 3 (IL-3) Glycoprotein is involved in neuronal cell survival [6, 7] upregulated EGCG
and development. It also is neuroprotective via 150 +LPS
microglia. vs LPS
alone
2.33-fold
increase
Interleukin 11 (IL- Member of the IL-6 family of cytokines that may [8, 9] upregulated EGCG
11) exhibit neurorescue capability. 150 +LPS
vs LPS
alone
5.14-Fold

increase




Interleukin 6 (IL-6) Proinflammatory cytokine prominent in [10] NF-«xB downregulated
neurodegenerative disorders
Nitric Oxide (NO) Many functions are related to inflammation, cellular [11, 12] NF-xB downregulated
survival, and neuronal immunology. It is a
prominent biomarker for reactive oxygen species
(ROS) and neuroinflammation.
Colony-stimulating Cytokine expelled by macrophages is increased in [13, 14] NF-«xB upregulated EGCG
factor 2 (CSF2), aka AD patients. It regulates neuroinflammation. 150 +LPS
Granulocyte- vs LPS
macrophage colony- alone
stimulating factor 8.92-fold
(GM-CSF) increase
Colony Stimulating (CSF3)
Factor 3 (CSF3), aka
Granulocyte colony-
stimulating factor
(G-CSF)
Tumor Necrosis The gene associated with the TNF superfamily [15] NF-«xB upregulated EGCG
Factor Subfamily, 10 exhibits proinflammatory properties in AD. 150 +LPS
(TNFS10) aka vs LPS
Tumor necrosis, alone
factor-related 1.62-fold
increase

apoptosis-inducing
ligand (TRAIL)




Supplementary Table S2. PCR array evaluation of signaling pathways linked to neuroinflammation and oxidative stress.

1 (AKT1)

AKT3 aka Thymoma viral
proto-oncogene 3

with insulin signaling in the
brain

Serine Threonine protein
kinase acting on the brain

Gene of interest Neuroimmunological References Signaling Down/upregulation Fold Change +/-
function Pathway by EGCG
Mitogen-activated protein A key constituent of the [16] NFkB and downregulated EGCG 150 +LPS and EGCG
kinase (MAPK) kinase MAPK/ERK pathway and the mTOR
kinase (MAP3k1) and Mitogen- | regulation of infalammatory
Activated Protein Kinase 3 processes i.e.apoptosis and
(MAPK3) lysosomal clearance
mechanisms
Protein kinase c beta (PRKCB) Enzyme correlated with [17] mTOR downregulated EGCG 150 +LPS vs LPS alone 4.03 fold
mediating NO production decrease
via microglial INOS
regulation
Mechanistic target of Signaling pathway involved [18] mTOR downregulated EGCG 150 +LPS vs LPS alone 1.46 fold
rapamycin (mTOR) in cellular survival, nutrient decrease
sensing, autophagy, aging,
and inflammation
AKT Serine/Threonine Kinase | An enzyme that is associated [19-21] mTOR/PI3k-Akt downregulated EGCG 150 +LPS vs. LPS alone 1.49 fold

decrease (AKT3)

EGCG 150 +LPS vs. LPS alone 1.54 fold

decrease (AKT1)




may exhibit neuroprotective

properties or serve to

heighten ROS
Insulin 2 (INS2) A gene that codes for [22] mTOR upregulated EGCG 150 +LPS vs. LPS alone 10.42 fold
preproinsulin increase
Phospholipase D2 (PLD2) It is an enzyme that [23] mTOR upregulated EGCG 150 +LPS vs. LPS alone 1.78 fold
modulates membrane increase
phospholipid activity, which
may serve as a biomarker for
aberrant protein aggregation
in AD
SMAD Family Member 3 An effector of TGF-f3 [24] NF«B downregulated EGCG 150 +LPS vs. LPS alone 1.66 fold
(SMAD?3), aka Mothers against signaling and enhancer of decrease
decapentaplegic homolog 3 NFxB, but it also may affect
aging in neurodegenerative
disorders
C-C Motif Chemokine Ligand A chemokine that exhibits [25] NF«xB downregulated EGCG 150 +LPS vs LPS alone 1.30 fold

5 (CCL5)

aka Regulated upon
Activation, Normal T Cell

proinflammatory properties
in microglia and in AD.

decrease




Expressed and Presumably

Secreted (RANTES)
Nucleotide-binding Intracellular inspectors of [26] NF«B downregulated EGCG 150 +LPS vs LPS alone 1.43 fold
oligomerization domain- inflammation serve as decrease
containing protein 1 (NOD1) biomarkers for aberrant
cellular action
Heme Oxygenase 1 (HMOX1) | Enzymes with antioxidative [27] NF«B upregulated EGCG 150 +LPS vs LPS alone 3.24 fold
action, which may act as a increase
regulator of ferroptosis
Tnf receptor-associated factors Constitutive elements have [28] NFxB downregulated EGCG 150 +LPS vs LPS alone 1.49 fold
(TRAF 2,3 and 5) been implicated as decrease (Traf2)
biomarkers for AD,
especially Traf2. They EGCG 150 +LPS vs LPS alone 1.42 fold
regulate autophagy, cytokine decrease (Traf 3)
activity, and cellular
development. EGCG 150 +LPS vs LPS alone 1.88 fold
decrease (Traf 5)
Tumor Necrosis Factor (TNF) A known inflammatory [29] NF«xB upregulated EGCG 150 +LPS vs LPS alone 4.01 fold

signaling pathway that
involves the cytokine TNF-q,
which is known to present
inflammation in microglia.
This gene is a biomarker for
neuroinflammation in AD

increase




tumor necrosis factor alpha- This gene is shown to [30] NF«xB upregulated EGCG 150 +LPS vs. LPS alone 1.41 fold
induced protein 3 (TNFAIP3) | regulate autophagy and have increase
anti-inflammatory properties.
Toll-like receptors (TLR 1, 3, Intracellular ligands are a [31, 32] NF«B and PI3k- upregulated EGCG 150 +LPS vs. LPS alone 2.17 fold
and 4) emphasis on TLR4 form of pattern recognition Akt increase (TLR3)
receptors (PRRs) acting to
mediate immunosurveillance EGCG 150 +LPS vs. LPS alone 1.86 fold
and aging mechanisms. increase and (TLR4)
EGCG 150 +LPS vs. LPS alone 3.05 fold
increase (TLR1)
RelB Proto-Oncogene, NF-KB Gene is important for the [33] NF-xB downregulated EGCG 150 +LPS vs. LPS alone 1.76 fold
Subunit (RELB). proper function of microglial decrease
and neural homeostasis.
Interleukin 1 beta A cytokine that is linked to [34] NF-xB downregulated EGCG 150 +LPS vs. LPS alone 1.16 fold

(IL1B)

IL-1 receptor activity that
functions in microglial
inflammation and other CNS
responsibilities, i.e.,
functioning as a growth
factor

decrease




Nuclear Factor Kappa B2 (Nf- The gene encodes a subunit [35] NF«xB downregulated EGCG 150 +LPS vs. LPS alone 1.62 fold
kB2) of NFkB. NF«kB is a decrease
transcription factor that is
responsible for a multitude of
cellular activities, but in
microglia, it may regulate
Tau
FBJ osteosarcoma oncogene Transcription mediators [36, 37] NF«B and PI3k- downregulated EGCG 150 +LPS vs. LPS alone 2.03 fold
AP-1 Transcription Factor correlated with control of akt decrease (NFkB)
Subunit (FOS) aka c-fos or inflammation and microglial
Activator Protein 1 (AP-1) development. It functions to EGCG 150 +LPS vs. LPS alone 1.84 fold
control proper brain decrease (PI3K-Akt)
maturation.
Signal Transducer And Important transcription [38] NF«xB downregulated EGCG 150 +LPS vs. LPS alone 2.14 fold
Activator Of Transcription 1 factors involved in aging and decrease
(STATI) neurodegenerative activity
Glutathione Peroxidases (GPX Enzymes implicated in [39] NO downregulated EGCG 150 + vs. LPS alone 2.63 fold decrease

1 and 4)

oxidative stress regulation

related to neurodegeneration.

(Gpx1)

EGCG 150 +LPS vs. LPS alone 2.84 fold
decrease (Gpx4)




Cathepsin B (CTSB)

Lysosomal cysteine protease

for its presumed prevention

of AD

[40] NO downregulated EGCG 150 +LPS vs. LPS alone 3.30 fold
is active in protein decrease
aggregation in
neurodegenerative ailments.

Immunity-related GTPase The enzyme displays [41] NO downregulated EGCG 150 +LPS vs. LPS alone 3.46 fold
family M protein (Irgm1), aka autophagic properties. decrease
interferon-inducible protein 1

Nitric Oxide Synthase 1 The enzyme that modulates [42] NO downregulated EGCG 150 +LPS vs. LPS alone 2.05 fold
neuronal (NOS1) NO activity in the brain may decrease
be a possible link to INOS
Phosphoprotein enriched in Protein that is known to [43, 44] NO downregulated EGCG 150 +LPS vs. LPS alone 1.57 fold
astrocytes 15A (elfde function in apoptosis but decrease
may have autophagic
) regulative abilities
Growth factor receptor bound The molecule that acts to [45] NO upregulated EGCG 150 +LPS vs. LPS alone 2.15 fold
protein 2-associated protein 1 mediate cognitive function increase
(GABI1)
Cyclin-dependent kinase Involved in cell cycle arrest [46] PI3k-Akt downregulated
inhibitor 1B (CDKN1B) and currently being studied

EGCG 150 +LPS vs. LPS alone 2.14 fold
decrease




Growth factor receptor-bound
protein 2 (GRB2)

A signaling adaptor domain
associated with
activated Cdc42-
associated kinase 1(ACK1)
mediates TLR signaling. It
seems to interact with
amyloid beta.

[47, 48]

PI3k-Akt

downregulated

EGCG 150 +LPS vs. LPS alone 1.36 fold
decrease

Insulin-like growth factor I
receptor (IGF1R)

Receptors involved in
managing IGF-1, which
controls aging and
neuroinflammation.

[49, 50]

PI3k-Akt

downregulated

EGCG 150 +LPS vs. LPS alone 1.55 fold
decrease

V-raf-leukemia viral oncogene
1 (RAF1)

An initiator of Extracellular
signal-regulated
kinase (ERK) signaling that is
expressed highly in the AD
brain

(51]

PI3k-Akt

downregulated

EGCG 150 +LPS vs LPS alone 1.94 fold
decrease

Eukaryotic translation
initiation factor 4E (ELF4E)

Translational modulator
altered in AD.

[52]

PI3K-AKT

upregulated

LPS alone vs. control 8.64 fold increase

Both EGCG 150 +LPS vs. LPS alone 3.45 fold
increase




Son of sevenless homolog 1 A guanine nucleotide [53] PI3k-Akt downregulated EGCG 150 +LPS vs. LPS alone 1.70 fold
(Drosophila) (SOS1) exchange factor (GEF) that decrease
interacts with RAS
Glucuronidase, beta (GUSB) The gene that codes for the [54] PI3k-Akt downregulated EGCG 150 +LPS vs. LPS alone 1.42 fold
processing of 3 decrease
glucuronidase, which is
involved in the lysosomal
breakdown of large cells
glycosaminoglycans (GAGs),
May be connected to AD.
The regulatory-associated The regulative gene that [55] mTOR downregulated EGCG 150 +LPS vs. LPS alone 1.72 fold
protein of MTOR, complex 1 modulates the nutrient- decrease
(RPTOR) sensing capabilities of
mTORC1
Protein kinase, AMP-activated, A gene associated with [56] mTOR downregulated EGCG 150 +LPS vs. LPS alone 1.516 fold
beta 2 non-catalytic subunit AMPK in regulating energy decrease
and cellular bioenergetics
(PRKAB2) along with mTORC1
Cytochrome b-245, alpha The gene that encodes for a [57-59] EGCG 150 +LPS vs. LPS alone 3.18 fold
polypeptide unit associated with the decrease
nicotinamide adenine NO downregulated
(CYBA) dinucleotide phosphate

oxidase (NADPH) complex
that produces superoxide




dismutase (SOD) and is
involved in phagocytosis

Hepsin (HPN) A transmembrane serine [60-62] NO downregulated EGCG 150 +LPS vs LPS alone 3.08 fold
protease involved in many decrease

cellular process but may have
a role in activating matrix

metalloproteinases.
Growth Arrest and DNA A thoroughly studied protein [63-66] NO downregulated EGCG 150+ LPS vs LPS alone 2.42 fold
Damage Inducible Protein involved in aging, molecular decrease
(GADD45A) stress control, DNA repair,

and cellular development
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