
Supplementary Table S1. PCR array analysis of cytokines/chemokines correlated to neuroinflammation and oxidative stress. 

Gene of interest Neuroimmunological purpose  References Associated 
Signaling Pathway 

Downregulated 
or Upregulated 

by EGCG 

Fold 
Change 

t/- 

Macrophage 
migration inhibitory 

factor (MIF) 

Cytokine is implicated in inflammatory processes in 
Alzheimer's disease.  

 

[1-3] 

 

 
downregulated Both 

EGCG 
150 +LPS  

Cytokine C-C motif 
ligand 2 (CCL2) aka 

Monocyte 
chemoattractant 

protein-1 (MCP-1) 

Cytokine has a major role in amyloidogenesis in 
neurodegenerative disease. 

 

[4, 5] NF-κB downregulated EGCG 
150 +LPS 

vs LPS 
alone 

1.44-fold 
decrease 

 

Interleukin 3 (IL-3) Glycoprotein is involved in neuronal cell survival 
and development. It also is neuroprotective via 

microglia. 

  
  

[6, 7] 
 

upregulated EGCG 
150 +LPS 

vs LPS 
alone 

2.33-fold 
increase 

 

Interleukin 11 (IL-
11) 

Member of the IL-6 family of cytokines that may 
exhibit neurorescue capability.  

 

[8, 9] . upregulated EGCG 
150 +LPS 

vs LPS 
alone 

5.14-Fold 
increase 



Interleukin 6 (IL-6) Proinflammatory cytokine prominent in 
neurodegenerative disorders 

 

[10] NF-κB downregulated  

Nitric Oxide (NO) Many functions are related to inflammation, cellular 
survival, and neuronal immunology. It is a 

prominent biomarker for reactive oxygen species 
(ROS) and neuroinflammation.  

 

[11, 12] NF-κB downregulated  

Colony-stimulating 
factor 2 (CSF2), aka 

Granulocyte-
macrophage colony-

stimulating factor 
(GM-CSF) 

Colony Stimulating 
Factor 3 (CSF3), aka 
Granulocyte colony-

stimulating factor 
(G-CSF) 

Cytokine expelled by macrophages is increased in 
AD patients. It regulates neuroinflammation.  

 

[13, 14] NF-κB upregulated EGCG 
150 +LPS 

vs LPS 
alone 

8.92-fold 
increase 
(CSF3) 

 

Tumor Necrosis 
Factor Subfamily, 10 

(TNFS10) aka 
Tumor necrosis, 

factor-related 
apoptosis-inducing 

ligand (TRAIL)   

The gene associated with the TNF superfamily 
exhibits proinflammatory properties in AD. 

 

[15] NF-κB upregulated EGCG 
150 +LPS 

vs LPS 
alone 

1.62-fold 
increase 

 

  



Supplementary Table S2. PCR array evaluation of signaling pathways linked to neuroinflammation and oxidative stress. 

Gene of interest Neuroimmunological 
function 

References Signaling 
Pathway 

Down/upregulation 
by EGCG 

Fold Change +/- 

Mitogen-activated protein 
kinase (MAPK) kinase 

kinase (MAP3k1) and Mitogen-
Activated Protein Kinase 3 

(MAPK3) 

A key constituent of the 
MAPK/ERK pathway and the 
regulation of infalammatory 
processes i.e.apoptosis and 

lysosomal clearance 
mechanisms  

[16] NFkB and 
mTOR 

downregulated EGCG 150 +LPS and EGCG  

Protein kinase c beta (PRKCB) Enzyme correlated with 
mediating NO production 

via microglial INOS 
regulation 

 

[17] mTOR downregulated EGCG 150 +LPS vs LPS alone 4.03 fold 
decrease 

 

Mechanistic target of 
rapamycin (mTOR) 

Signaling pathway involved 
in cellular survival, nutrient 
sensing, autophagy, aging, 

and inflammation 

 

[18] mTOR downregulated  EGCG 150 +LPS  vs LPS alone 1.46 fold 
decrease 

 

AKT Serine/Threonine Kinase 
1 (AKT1)  

AKT3 aka Thymoma viral 
proto-oncogene 3 

An enzyme that is associated 
with insulin signaling in the 

brain 

Serine Threonine protein 
kinase acting on the brain 

[19-21] mTOR/PI3k-Akt downregulated EGCG 150 +LPS vs. LPS alone 1.49 fold 
decrease (AKT3) 

EGCG 150 +LPS vs. LPS alone 1.54 fold 
decrease (AKT1) 



may exhibit neuroprotective 
properties or serve to 

heighten ROS 

 

 

 

Insulin 2 (INS2) A gene that codes for 
preproinsulin  

[22] mTOR upregulated EGCG 150 +LPS vs. LPS alone 10.42 fold 
increase  

 

Phospholipase D2 (PLD2) It is an enzyme that 
modulates membrane 

phospholipid activity, which 
may serve as a biomarker for 
aberrant protein aggregation 

in AD 

 

[23] mTOR upregulated EGCG 150 +LPS vs. LPS alone 1.78 fold 
increase 

 

SMAD Family Member 3 
(SMAD3), aka Mothers against 

decapentaplegic homolog 3 

An effector of TGF-β 
signaling and enhancer of 

NFκB, but it also may affect 
aging in neurodegenerative 

disorders 

 

[24] NFκB downregulated EGCG 150 +LPS vs. LPS alone 1.66 fold 
decrease  

C-C Motif Chemokine Ligand 
5 (CCL5)  

aka Regulated upon 
Activation, Normal T Cell 

A chemokine that exhibits 
proinflammatory properties 

in microglia and in AD. 

[25] NFκB downregulated EGCG 150 +LPS vs LPS alone 1.30 fold 
decrease 

 



Expressed and Presumably 
Secreted (RANTES) 

Nucleotide-binding 
oligomerization domain-

containing protein 1 (NOD1) 

Intracellular inspectors of 
inflammation serve as 

biomarkers for aberrant 
cellular action 

 

[26] NFκB downregulated EGCG 150 +LPS vs LPS alone 1.43 fold 
decrease 

 

Heme Oxygenase 1 (HMOX1) Enzymes with antioxidative 
action, which may act as a 

regulator of ferroptosis 

 

[27] NFκB upregulated EGCG 150 +LPS vs LPS alone 3.24 fold 
increase 

 

Tnf receptor-associated factors 
(TRAF 2,3 and 5) 

Constitutive elements have 
been implicated as 
biomarkers for AD, 

especially Traf2. They 
regulate autophagy, cytokine 

activity, and cellular 
development. 

 

[28] NFκB downregulated EGCG 150 +LPS vs LPS alone 1.49 fold 
decrease (Traf2) 

EGCG 150 +LPS vs LPS alone 1.42 fold 
decrease (Traf 3) 

EGCG 150 +LPS vs LPS alone 1.88 fold 
decrease (Traf 5) 

 

Tumor Necrosis Factor (TNF) A known inflammatory 
signaling pathway that 

involves the cytokine TNF-α, 
which is known to present 
inflammation in microglia. 

This gene is a biomarker for 
neuroinflammation in AD 

[29] NFκB upregulated EGCG 150 +LPS vs LPS alone 4.01 fold 
increase 

 



tumor necrosis factor alpha-
induced protein 3 (TNFAIP3) 

This gene is shown to 
regulate autophagy and have 
anti-inflammatory properties.  

[30] NFκB upregulated EGCG 150 +LPS vs. LPS alone 1.41 fold 
increase 

 

Toll-like receptors (TLR 1, 3, 
and 4) emphasis on TLR4 

 

Intracellular ligands are a 
form of pattern recognition 
receptors (PRRs) acting to 

mediate immunosurveillance 
and aging mechanisms. 

 

[31, 32] NFκB and PI3k-
Akt 

upregulated EGCG 150 +LPS vs. LPS alone 2.17 fold 
increase (TLR3) 

EGCG 150 +LPS vs. LPS alone 1.86 fold 
increase and (TLR4) 

EGCG 150 +LPS vs. LPS alone 3.05 fold 
increase (TLR1) 

 

 

RelB Proto-Oncogene, NF-KB 
Subunit (RELB). 

Gene is important for the 
proper function of microglial 

and neural homeostasis. 

 

[33] NF-κB downregulated EGCG 150 +LPS vs. LPS alone 1.76 fold 
decrease  

 

Interleukin 1 beta 

(IL1B) 

A cytokine that is linked to 
IL-1 receptor activity that 

functions in microglial 
inflammation and other CNS 

responsibilities, i.e., 
functioning as a growth 

factor 

[34] NF-κB downregulated EGCG 150 +LPS vs. LPS alone 1.16 fold 
decrease  



Nuclear Factor Kappa B2 (Nf-
κB2) 

The gene encodes a subunit 
of NFκB. NFκB is a 

transcription factor that is 
responsible for a multitude of 

cellular activities, but in 
microglia, it may regulate 

Tau 

[35] NFκB downregulated EGCG 150 +LPS vs. LPS alone 1.62 fold 
decrease 

 

FBJ osteosarcoma oncogene 
AP-1 Transcription Factor 
Subunit (FOS) aka c-fos or 
Activator Protein 1 (AP-1) 

Transcription mediators 
correlated with control of 

inflammation and microglial 
development. It functions to 

control proper brain 
maturation. 

[36, 37] NFκB and PI3k-
akt 

downregulated EGCG 150 +LPS vs. LPS alone 2.03 fold 
decrease (NFκB) 

EGCG 150 +LPS vs. LPS alone 1.84 fold 
decrease (PI3K-Akt) 

 

Signal Transducer And 
Activator Of Transcription 1 

(STAT1) 

Important transcription 
factors involved in aging and 

neurodegenerative activity 

 

[38] NFκB downregulated EGCG 150 +LPS vs. LPS alone 2.14 fold 
decrease 

 

Glutathione Peroxidases (GPX 
1 and 4) 

Enzymes implicated in 
oxidative stress regulation 

related to neurodegeneration. 

 

[39] NO downregulated EGCG 150 + vs. LPS alone 2.63 fold decrease 
(Gpx1) 

EGCG 150 +LPS vs. LPS alone 2.84 fold 
decrease (Gpx4) 

 

 



Cathepsin B (CTSB) Lysosomal cysteine protease 
is active in protein 

aggregation in 
neurodegenerative ailments. 

 

[40] NO downregulated EGCG 150 +LPS vs. LPS alone 3.30 fold 
decrease 

 

Immunity-related GTPase 
family M protein (Irgm1), aka 
interferon-inducible protein 1 

The enzyme displays 
autophagic properties. 

 

[41] NO downregulated EGCG 150 +LPS vs. LPS alone 3.46 fold 
decrease 

 

Nitric Oxide Synthase 1 
neuronal (NOS1) 

The enzyme that modulates 
NO activity in the brain may 

be a possible link to INOS 

 

[42] NO downregulated EGCG 150 +LPS vs. LPS alone 2.05 fold 
decrease 

 

Phosphoprotein enriched in 
astrocytes 15A (elf4e 

) 

Protein that is known to 
function in apoptosis but 

may have autophagic 
regulative abilities 

[43, 44] NO downregulated EGCG 150 +LPS vs. LPS alone 1.57 fold 
decrease  

 

Growth factor receptor bound 
protein 2-associated protein 1 

(GAB1) 

The molecule that acts to 
mediate cognitive function 

[45] NO upregulated EGCG 150 +LPS vs. LPS alone 2.15 fold 
increase 

 

Cyclin-dependent kinase 
inhibitor 1B (CDKN1B) 

Involved in cell cycle arrest 
and currently being studied 
for its presumed prevention 

of AD 

[46] PI3k-Akt downregulated EGCG 150 +LPS vs. LPS alone 2.14 fold 
decrease 



 

 Growth factor receptor-bound 
protein 2 (GRB2) 

A signaling adaptor domain 
associated with 

activated Cdc42-
associated kinase 1(ACK1) 
mediates TLR signaling. It 

seems to interact with 
amyloid beta. 

 

[47, 48] PI3k-Akt downregulated EGCG 150 +LPS vs. LPS alone 1.36 fold 
decrease 

 

Insulin-like growth factor I 
receptor (IGF1R) 

Receptors involved in 
managing IGF-1, which 

controls aging and 
neuroinflammation. 

 

[49, 50] PI3k-Akt downregulated  EGCG 150 +LPS vs. LPS alone 1.55 fold 
decrease  

 

V-raf-leukemia viral oncogene 
1 (RAF1) 

An initiator of Extracellular 
signal-regulated 

kinase (ERK) signaling that is 
expressed highly in the AD 

brain 

 

[51] PI3k-Akt downregulated EGCG 150 +LPS vs LPS alone 1.94 fold 
decrease 

 

Eukaryotic translation 
initiation factor 4E (ELF4E) 

Translational modulator 
altered in AD. 

 

[52] PI3K-AKT upregulated LPS alone vs. control 8.64 fold increase 

Both EGCG 150 +LPS vs. LPS alone 3.45 fold 
increase  



 

Son of sevenless homolog 1 
(Drosophila) (SOS1) 

A guanine nucleotide 
exchange factor (GEF) that 

interacts with RAS 

[53] PI3k-Akt downregulated EGCG 150 +LPS vs. LPS alone 1.70 fold 
decrease  

 

Glucuronidase, beta (GUSB) The gene that codes for the 
processing of β 

glucuronidase, which is 
involved in the lysosomal 
breakdown of large cells 

glycosaminoglycans (GAGs), 
May be connected to AD. 

[54] PI3k-Akt downregulated EGCG 150 +LPS vs. LPS alone 1.42 fold 
decrease  

 

The regulatory-associated 
protein of MTOR, complex 1 

(RPTOR) 

The regulative gene that 
modulates the nutrient-
sensing capabilities of 

mTORC1 

[55] mTOR downregulated  EGCG 150 +LPS vs. LPS alone 1.72 fold 
decrease  

 

Protein kinase, AMP-activated, 
beta 2 non-catalytic subunit 

(PRKAB2) 

A gene associated with 
AMPK in regulating energy 
and cellular bioenergetics 

along with mTORC1 

[56] mTOR downregulated EGCG 150 +LPS vs. LPS alone 1.516 fold 
decrease  

 

Cytochrome b-245, alpha 
polypeptide 

(CYBA) 

The gene that encodes for a 
unit associated with the 
nicotinamide adenine 

dinucleotide phosphate 
oxidase (NADPH) complex 
that produces superoxide 

[57-59]  

NO 

 

downregulated 

EGCG 150 +LPS vs. LPS alone 3.18 fold 
decrease 
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