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Experimental section 

Reagents 

Titanium butoxide (98.0%), copper sulfate pentahydrate (99.0%), sodium thiosulfate 

pentahydrate (99.0%), melamine, disodium hydrogen phosphate and sodium 

dihydrogen phosphate were purchased from Shanghai Macklin Biochemical Co., Ltd. 

Hydrochloric acid, potassium ferricyanide, acetone, fructose, glucose, sucrose, L-malic 

acid, L-citric acid, ethanol, L-threonine, L-proline, L-lysine and L-histidine were 

purchased from Aladdin Reagent Database, Inc. (Shanghai, China). Sesamol, Tert-butyl 

hydroquinone (TBHQ), Vitamin E (VE), Butyl hydroxyanisole (BHA), Propyl gallate 

(PG) and Butylated hydroxytoluene (BHT) were obtained from Sigma–Aldrich. 

Fluorine-doped tin oxide (FTO) glass was purchased from Jinge Co., Ltd. (Wuhan, 

China). 

Apparatus  

The sample morphologies were characterized using field-emission scanning electron 

microscopy (FE-SEM; JSM-7001F) and (high-resolution) transmission electron 

microscopy [(HR)-TEM; JEOL JEM-2100F] operating at 200-kV acceleration. The 

sample crystallinity was measured using powder X-ray diffraction (XRD; PW3040/60 

diffractometer). The surface electronic states were analyzed using X-ray photoelectron 

spectroscopy (XPS; Thermo ESCALAB 250Xi), and all the binding energies were 

referenced to the C 1s peak at 284.8 eV. The ultraviolet–visible (3600 plus spectrometer; 

Shimadzu) absorption spectra were recorded using BaSO4 as a reference. The sample 

electrical resistances were measured using electrochemical impedance spectroscopy 

(EIS; 1255 B frequency response analyzer; Solartron Inc., U.K.) at an amplitude of 5 

mV from 10−1 to 105 Hz in a mixed electrolyte solution comprising [Fe(CN)6]3−/4− (1 

mmol L−1) and KCl (0.1 mol L−1). All the PEC measurements were performed using an 

electrochemical workstation (CHI 660E; Shanghai Chenhua; China) and a standard 



S3 
 

three-electrode system comprising a modified FTO working electrode, a commercial 

Ag/AgCl reference electrode, and a platinum wire counter electrode. FTO slices were 

cleaned by immersion in an aqueous NaOH solution (2.0 mol L−1). For the PEC analysis, 

PBS (0.1 mol L−1, PH=7.4) was used as a supporting electrolyte. The electrode was 

fastened to the PEC cell (containing a certain SM concentration) equipped with a 630-

nm light irradiation, exhibiting a working potential of 0 V. The photocurrent was 

measured at least three times and all the experiments were performed at room 

temperature.  

Results and discussion 

 

Figure S1. SEM images of TiO2 (A) and CuS/TiO2 (B). 
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Figure S2. X-ray photoelectron spectroscopy (XPS) of g-C3N4/CuS/TiO2. High-

resolution spectra in (A) Ti 2p, (B) O 1s, (C) N 1s, (D) C 1s, (E) Cu 2p, and (F) S 2p. 

 

Figure S3. (A) The effect of different CuS deposition amount on photocurrent of g-

C3N4/CuS/TiO2 FTO electrode. (B) Photocurrent responses of a series of g-C3N4 

doped g-C3N4/CuS/TiO2-modified FTO electrode. (C) Photocurrent responses of g-

C3N4/CuS/TiO2-modified FTO electrode under different function of wavelength and 

(D) Influence of applied potential on g-C3N4/CuS/TiO2-modified FTO electrode 

photocurrent response. All condition optimization experiments were tested in 0.1 mol 

L−1 PBS buffer solution containing 123.46 μmol L−1 SM. 
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Figure S4. Photocurrent response curves generated from g-C3N4/CuS/TiO2-based 

PEC sensing platform of single and binary mixed antioxidants in equal proportions at 

different concentrations: (A) SM, VE, and SM+VE. (B) SM, TBHQ, and SM+TBHQ. 

(C) SM, BHA, and SM+BHA. (D) SM, BHT, and SM+ BHT. (E) SM, PG, and 

SM+PG. 
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Table S1. The electrochemical properties and synergistic effects of g-C3N4/CuS/TiO2 

PEC sensor in the presence of 484.812 μmol L−1 SM, VE, TBHQ, BHA, BHT, PG and 

a mixture of SM and other antioxidants with the same mole rate (1:1).  
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Table S2. Comparison of the SM detection performance of various methods. 

Method Linear range  LOD Reference 

Electrochemical detection 1.7-67.0 μM -- [1] 

Electroanalytical assay 3.0-140.0 μM 0.71 μM [2] 

High Performance Liquid  

Chromatography 
5.0-500.0 mg kg−1 0.02 mg kg−1 [3] 

Spectrofluorometer 2.4-1200.0 μM 7.8 μM [4] 

PEC sensor 2.0-1277.0 μM 1.8 μM This work 
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