
SUPPLEMENTARY INFORMATION 

A Fiber-Optic Sensor-Embedded and Machine Learning  

Assisted Smart Helmet for Multi-Variable Blunt Force 

Impact Sensing in Real Time 

Yiyang Zhuang 1,2, Taihao Han 3, Qingbo Yang 4, Ryan O’Malley 2, Aditya Kumar 3,  

Rex E. Gerald II 2 and Jie Huang 2,* 

1 Research Center for Optical Fiber Sensing, Zhejiang Laboratory, Hangzhou 311121, China 
2 Department of Electrical and Computer Engineering, Missouri University of Science and 

Technology, Rolla, MO 65409, USA 
3 Department of Materials Science and Engineering, Missouri University of Science and 

Technology, Rolla, MO 65409, USA 
4 Cooperative Research, College of Agriculture, Environmental and Human Sciences, Lincoln 

University of Missouri, Jefferson City, MO 65102, USA 

 

*Corresponding author 

Jie Huang (jieh@mst.edu) 

 

 

 

 

S1. Basic introduction to the ML models used in this study 

a. Support Vector Machine (SVM) 



SVM predicts new patterns based on the training data as the goal of learning a maximum-margin 

hyperplane in the feature space [17]. The maximum hyperplane is formed when the decision 

boundary has the maximal distance from any training data. During the training step, input variables 

are mapped from a low-dimension to a high-dimension feature space via kernel functions. The 

SVM attempts to determine a set of linear or nonlinear (e.g., polynomial or sigmoidal) objective 

functions that have a maximum deviation of ε with respect to the actual values in the training 

dataset. 

b. Gaussian Process Regression (GPR) 

Gaussian process regression (GPR) applies a stochastic process to collect random variables, any 

finite number of which have a joint Gaussian distribution [18]. GPR organizes data in a manner, 

based on a non-parametric approach, such that any given subset of the organized data invariably 

follows a multivariate Gaussian distribution. 

c. Random Forest (RF) 

Random Forest, a collection of tree predictors, is based on the integration of two machine learning 

techniques: bagging and random feature selection [19, 20]. During the training process, a series of 

“deep” unpruned decision trees are grown, thus dividing the entire training dataset into multiple, 

uncorrelated splits. For any given input, the RF model collects predictions from all of its 

constituent trees and subsequently averages them to yield the final prediction.  

d. K-nearest Neighbor Instance-Based Learner (IBK) 

K-nearest neighbor instance-based learning (IBK), a lazy learner, collects the training data as 

instances and find the closest k nearest training records via distance measurements [21]. In order 

to compute the testing records, the model finds the instances which have the most similar input 



variables to the testing data in the collection and returns outputs of the instances as the predicted 

value for testing data [22]. For multiple attributes, the instance is classified by a majority vote of 

the k nearest neighbors. The weights of each instance are weighted by the inverse of the attribute 

distance from the testing data, which allows the model to modify the strength of the votes via the 

distance from testing data [23]. This method was used because it has several advantages [21]: (1) 

simplicity- a rigorous analysis can be used in the model; (2) robust model- noise and irrelevant 

attributes can be tolerated; (3) relaxed concept bias- piecewise linear approximation of concepts 

are learned; (4) low updating cost- saves the new instance without additional computation. The 

only limitation of this model is that the prediction accuracy depends on the ability to store instances.  

e. Ensemble model: Additive Regression-Support Vector Machine (AR-SVM)  

The additive regression (AR) technique employs the gradient boosting approach to improve the 

prediction performance of the SVM. In the first step, the standalone SVM model is employed, 

whilst using the entire database, with all input and output variables, for construction of “deep” 

trees. In the second step, residuals of the predictions (i.e., the differences between actual and SVM-

predicted values) are used to construct a second set of trees; the objective, here, is to train the 

second set of trees to fit the residuals such that the overall training error is reduced. This tandem 

between the aforementioned pair of steps—of performing predictions using the SVM-model, and 

subsequently refining the prediction performance by fitting the residuals—is repeated over several 

iterations until convergence is reached, that is, reduction in training error is < 10−6 units for 3 

successive iterations. In the last step, the predictions of all trees within the ensemble are averaged 

to obtain the final predictions. 

 

 



 

Figure S1. The Newport femtosecond laser microfabrication system, an FBG structure, and the 

corresponding reflection spectrum. (a) The newly purchased fs laser microfabrication system in 

the Missouri S&T Blast Lab (Emerson Electric. Co. Hall, room G-18). (b) A newly made FBG 

structure observed under a microscope with annotated fiber structures. The fabricated fiber Bragg 

grating is located within the fiber core. The scale bar is 20 μm. (c) The reflection spectrum 

collected using the fabricated FBG structure sample in (b).  

 

S2. Brief steps of FBG sensor fabrication using the femtosecond laser microfabrication 

system 

a. Sample installation: Fabrication of the FBG sensor starts with the immobilization of a single-

mode optical fiber mounted on top of a microscopic slide, which is then fixed to the micro-

fabrication stage. Next, a couple of drops of RI matching gel are applied atop the optical fiber. 

Next, another slide is quickly placed on top of the fiber, so that a sandwich structure is formed, 

with all parts affixed to the stage.  

b. Optical fiber alignment and focal plane adjustment: To obtain and retain a clear view of the 

fiber core during fabrication of the FBG, a whole region of interest of the fiber needs to be aligned 

perpendicular to the laser path using the X/Y stages and the rotating and tilting micrometers. 

Meanwhile, the focal plane of the laser-guiding lens must be adjusted such that the fiber core 



boundary is blurred; the boundary, however, must become apparent again when moving the z stage 

up or down by 5 μm.  

c. Parameter designations: The featured wavelength and bandwidth of the fabricated FBG can be 

changed by controlling the repetition rate of the fs laser and the speed of the moving stage. Here, 

the wavelength, bandwidth, and reflectivity of the FBG are determined by: 
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where vtrans is the moving speed of the laser head along the Y-axis, m is the order of the FBG, fr is 

the fs laser pulse repetition frequency, L is the length of FBG, and Δn is the RI perturbation inside 

the optical fiber core. From Equations (S2) and (S3), we can calculate that the longer the length of 

the FBG, narrower the bandwidth and the higher the reflectivity. Hence, the FBG bandwidth can 

be reduced by decreasing Δn or using a higher order of m. In addition, the side lobes of the FBG 

can be suppressed by making an apodized FBG instead of the regular FBG. The apodized profile 

can also be modified by changing the laser power.  

d. Linear single-line raster. In the final step, the laser writing position along the fiber core is 

progressively changed until a sufficient number of structural units are fabricated for an FBG.  

A microscopic image of a single FBG structure, made along an optical fiber core using the 

femtoFBG, is shown in Figure 2b. The boundary between the core and cladding can be observed. 



The dark line along the center of the core is the FBG pattern that was fabricated. This result 

demonstrates our ability to fabricate an FBG—using the state-of-the-art microfabrication system 

in the Missouri S&T Blast Lab—without compromising the fiber polymer cladding. Through our 

experiments, we have also finalized the “optimal” set of parameters for fabrication: stage 

translation speed = 95 μm/s; repetition rate of the fs laser = 61 Hz; and, the RI profile set to a 

Gaussian distribution. The reflection spectrum obtained from the FBG is shown in Figure 2c. The 

figure exemplifies a high-fidelity result that can only be obtained if the FBG structure is accurate. 

The peak observed at 1558 nm is a clear sign that the FBG is fully functional; notably, its full-

width-half-maximum (FWHM) bandwidth is 2.4 nm and the signal-to-noise ratio is 18 dB, which 

also corroborate the FBG’s reasonable performance.  

 

Figure S2 Picture of a single FBG embedded smart helmet prototype. Red arrow shows the location 

of the FBG sensor, which is fabricated with a length of 0.5 cm.  

 



 

Figure S3 Schematics of the wired (upper) and wireless (lower) interrogation methods.  

 

 

 

 

 

 



 

Figure S4. Graphs of predicted magnitude (bowling ball initial release height in cm) versus 

measured magnitude derived from four ML models. The ML models employed include: (a) 

Support Vector Machine (SVM), (b) Multilayer Perceptron—Artificial Neural Network (MLP-

ANN), (c) Random Forest (RF), (d) IBK. The plotted data represent 25% of the parent Database 

that were not previously included in the training process of the ML models. The dashed line 

represents the line of ideality and the solid lines represent ±10% boundaries. 



 

Figure S5. Graphs of predicted direction versus measured direction derived from four ML models. 

The ML models employed include: (a) Support Vector Machine (SVM), (b) Multilayer 

Perceptron—Artificial Neural Network (MLP-ANN), (c) Random Forest (RF), (d) IBK. The 

plotted data represent 25% of the parent Database that were not previously included in the training 

process of the ML models. The dashed line represents the line of ideality and the solid lines 

represent ±10% boundaries. 



 

Figure S6. Graphs of predicted impact latitude (position) versus measured latitude derived from 

four ML models. The ML models employed include: (a) Support Vector Machine (SVM), (b) 

Multilayer Perceptron—Artificial Neural Network (MLP-ANN), (c) Random Forest (RF), (d) IBK. 

The plotted data represent 25% of the parent Database that were not previously included in the 

training process of the ML models. The dashed line represents the line of ideality and the solid 

lines represent ±10% boundaries. 

 



 

 

 



 

 

 

 

 

 



 

Figure S7 Graphs of predicted impact magnitude versus measured magnitude from six boosted 

ML models. The ML models employed include: (a) SVM+, (b) S-SVM, (c) S-SVM+, (d) IBK+, 

(e) S-IBK, (f) S-IBK+. The plotted data represent 25% of the parent database that were not 

previously included in the training process of the ML models. The dashed line represents the line 

of ideality and the solid lines represent ±10% boundaries. 

 



 

Figure S8 Graphs of predicted impact direction versus measured direction from six boosted ML 

models. The ML models employed include: (a) SVM+, (b) S-SVM, (c) S-SVM+, (d) IBK+, (e) S-

IBK, (f) S-IBK+. The plotted data represent 25% of the parent database that were not previously 

included in the training process of the ML models. The dashed line represents the line of ideality 

and the solid lines represent ±10% boundaries. 

 

 



 

Figure S9 Graphs of predicted impact latitude versus measured latitude from six boosted ML 

models. The ML models employed include: (a) SVM+, (b) S-SVM, (c) S-SVM+, (d) IBK+, (e) S-

IBK, (f) S-IBK+. The plotted data represent 25% of the parent database that were not previously 

included in the training process of the ML models. The dashed line represents the line of ideality 

and the solid lines represent ±10% boundaries. 

 

 

 

 

 

 



 

 

 

 



 

 

 



 

Figure S10 Graphs of predicted impact magnitude versus measured magnitude for the new training 

dataset with an 80 ms time frame. The ML models employed include: (a) SVM, (b) IBK, (c) S-

SVM+, (d) S-IBK+. The plotted data represent 25% of the parent database that were not previously 

included in the training process of the ML models. The dashed line represents the line of ideality 

and the solid lines represent ±10% boundaries. 

 



 

Figure S11 Graphs of predicted impact direction versus measured direction for the new training 

dataset with an 80 ms time frame. The ML models employed include: (a) SVM, (b) IBK, (c) S-

SVM+, (d) S-IBK+. The plotted data represent 25% of the parent database that were not previously 

included in the training process of the ML models. The dashed line represents the line of ideality 

and the solid lines represent ±10% boundaries. 

 



 

Figure S12 Graphs of predicted impact latitude versus measured latitude for the new training 

dataset with an 80 ms time frame. The ML models employed include: (a) SVM, (b) IBK, (c) S-

SVM+, (d) S-IBK+. The plotted data represent 25% of the parent database that were not previously 

included in the training process of the ML models. The dashed line represents the line of ideality 

and the solid lines represent ±10% boundaries. 

 

 

 



 

 

 



 

 

 

 

 

 

 



 

Figure S13 Transient oscillatory signals generated by nine different impact directions on the 

wireless smart helmet, conducted using the mid-level impact energy, 10.82 J. Full view of the first 

200 ms transient signals is shown on the left. Expanded view of the red box is shown to the right 

illustrating the first 50 ms signals. Black arrows and lines indicate the signal patterns of peaks-

and-valleys. 

 

 

 

 

 



 

Figure S14 Graphs of predicted impact magnitudes versus measured magnitudes for the wireless 

sensing datasets derived from eight ML models. The ML models employed include: (a) IBK, (b) 

SVM, (c) S-IBK, (d) S-SVM, (e) IBK+, (f) SVM+, (g) S-IBK+, (h) S-SVM+. The plotted data 

represent 25% of the parent database that were not previously included in the training process of 

the ML models. The dashed line represents the line of ideality and the solid lines represent ±10% 

boundaries. 

 

 



 

Figure S15 Graphs of predicted impact directions versus measured directions for the wireless 

sensing datasets derived from eight ML models. The ML models employed include: (a) IBK, (b) 

SVM, (c) S-IBK, (d) S-SVM, (e) IBK+, (f) SVM+, (g) S-IBK+, (h) S-SVM+. The plotted data 

represent 25% of the parent database that were not previously included in the training process of 

the ML models. The dashed line represents the line of ideality and the solid lines represent ±10% 

boundaries. 

 

 

 

 

 

 



 

 

 


