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1. Standard LAMP reaction

Figure S1. Standard LAMP reaction with four primers (B3, F3, BIP and FIP). Steps 1 to 4 depict the
first stage of LAMP reaction. This first stage consists in the formation of a dumbbell from a generic
target thanks to the four primers. The stage 2 requires only the two primers BIP and FIP for the
isothermal dumbbell exponential amplification.
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Figure S2. Incorporation of extensions for the dumbbell LD. Formation of hairpin Hp1b from the
dumbbell LD followed by the duplication of hairpins: Two hairpins Hp1f and Hp2f are created from
the hairpin Hp1b with the use of a single BIP and enzymes. All the three extensions are incorporated
inside Hp2f.
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2. Primer limiting kinetic rate

In this section, the hybridization of FIP or BIP primers are the limiting kinetic steps.
The hybridization are supposed to be similar for both reactions and mainly depend on the
rate of hybridization khyb of the primer (either BIP or FIP) to the hairpin. The kinetics rules
are :

d
dt

c(0, t) = 0 (1)

d
dt

c(n, t) = khybcp(t)c(n − 1, t) for n ≥ 1 (2)

leading to

d
dt

cHp(t) = khybcp(t)
∞

∑
n=1

c(n − 1, t) = khybcp(t)cHp(t) (3)

d
dt

lHp(t) = 2lDkhybcp(t)
∞

∑
n=1

2n−1c(n − 1, t) + lDkhybcp(t)cHp(t)/2 (4)

d
dt

lHp(t) = khybcp(t)(2lHp(t)− lDcHp(t)/2) (5)

The length grows more rapidly than the concentration of strands due to the exponential
increase of the stem length of the hairpins produced. Indeed, if we assume that the rate
constant khyb does not depend on n, the differential equations for cHp(t) and lHp(t) may be
combined to lead:

dcHp

dlHp
=

cHp

2lHp − lDcHp/2
(6)

(2lHp − lDcHp/2)dcHp = cHpdlHp (7)

By introducing, lhp = ac2
Hp + blDcHp, we obtain:

(2ac2
Hp + 2blDcHp − lDcHp/2)dcHp = cHp(2acHp + blD)dcHp (8)

(blD − lD/2)cHpdcHp = 0 (9)

Thus, b = 1/2 is a solution and a = lD/cD is determined from the initial condition:
lHp0 = 3lDcD/2 = ac2

D + lDcD/2 where cD is the initial concentration of dumbbells. We
deduce the general expression for lHp as function of cHp:

lHp(t) = lD

(
c2

Hp(t)

cD
+

cHp(t)
2

)
(10)

This equation is valid as soon as the rate constant khyb is hairpin length independent.

2.1. Constant primer concentration

We assume at least for short times that the concentration of primers is constant:
cp(t) = cP. Then, the concentration of hairpins follows:

d
dt

cHp(t) = khybcPcHp(t) (11)

cHp(t) = cD exp(khybcPt) (12)
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For the length of hairpins,

lHp(t) = lD

(
c2

Hp(t)

cD
+

cHp(t)
2

)
(13)

lHp(t) = lDcD

(
exp(2khybcPt) + exp(khybcPt)/2

)
. (14)

Both the concentration and length of hairpins are exponentially increasing as expected with
a rate two times larger for the length than for the concentration of hairpins.

2.2. Saturation due to finite primer concentration

Since the number of initial primers is finite, at long timescales, the hairpin con-
centration may saturate due to a lack of primers. Indeed, for each new hairpin pro-
duced a primer disappears. So both concentrations of hairpins and primers are related :
cHp(t) + cp(t) = cD + cP = ctot. Thus,

d
dt

cHp(t) = khyb(ctot − cHp(t))cHp(t) (15)

khybt =
∫ cHp(t)

cD

dc
c(ctot − c)

khybctott =
∫ cHp(t)

cD

(ctot − c) + c
c(ctot − c)

dc

khybctott =
∫ cHp(t)

cD

dc
c
+
∫ cHp(t)

cD

dc
ctot − c

khybctott = ln
cHp(t)

cD
+ ln

ctot − cD
ctot − cHp(t)

exp(khybctott) =
(ctot − cD)cHp(t)
(ctot − cHp(t))cD

exp(khybctott)(ctot − cHp(t))cD = cPcHp(t)

cHp(t) =
ctotcD exp(khybctott)

cP + cD exp(khybctott)
(16)

With those assumptions, the concentration of hairpins follows a logistic function as gener-
ally fitted for LAMP experiments. The primer concentration decreases exponentially:

cp(t) = ctot − cHp(t) =
ctotcP

cP + cD exp(khybctott)
(17)

As shown previously,

lHp(t) = lD

(
c2

Hp(t)

cD
+

cHp(t)
2

)
(18)

lHp(t) =
lD
cD

(
ctotcD exp(khybctott)

cP + cD exp(khybctott)

)2

+
lD
2

(
ctotcD exp(khybctott)

cP + cD exp(khybctott)

)

lHp(t) =
lDctotcD

2
2ctot exp(2khybctott) + exp(khybctott)(cP + cD exp(khybctott))

(cP + cD exp(khybctott))2

lHp(t) =
lDctotcD

2
(2ctot + cD) exp(2khybctott) + ctotcP exp(khybctott)

(cP + cD exp(khybctott))2 (19)
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3. Saturation due to finite dNTPs concentration

Contrarily to the primer concentration, the dNTPs concentration cn(t) couples with
the length of the hairpins lHp(t) instead of their concentration cHp(t). Thus, the set of
coupled equations is the following:

d
dt

cHp(t) =
kEcn(t)

cn(t) + KD
cHp(t) (20)

d
dt

lHp(t) =
kEcn(t)

cn(t) + KD
(2lHp(t)− lDcHp(t)/2) (21)

cn(t) = ltot − lHp(t) (22)

with ltot = cn0 + lHp(0). For simplicity, we may neglect lDcHp(t) compared to lHp(t),

d
dt

lHp(t) =
2kE(ltot − lHp(t))lHp(t)

ltot − lHp(t) + KD
(23)

dt =
ltot − lHp + KD

2kE(ltot − lHp)lHp
dlHp (24)

A simple integration on the timescale [tco, t] leads to:

2kE(t − tco) =
∫ lHp(t)

lHp(tco)

ltot − l + KD
(ltot − l)l

dl (25)

=
∫ lHp(t)

lHp(tco)

1
l

dl +
∫ lHp

lHp0

KD
(ltot − l)l

dl (26)

= ln
lHp(t)

lHp(tco)
+

KD
ltot

∫ lHp(t)

lHp(tco)

(ltot − l) + l
(ltot − l)l

dl (27)

= ln
lHp(t)

lHp(tco)
+

KD
ltot

(
ln

lHp(t)
lHp(tco)

+ ln
ltot − lHp(tco)

ltot − lHp(t)

)
(28)

exp(2kE(t − tco)) =

(
lHp(t)

lHp(tco)

) ltot+KD
ltot

(
ltot − lHp(tco)

ltot − lHp(t)

) KD
ltot

(29)

The expression is no more a logistic function.
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4. Figures from Experimental results

Figure S3. EvaGreen concentration effects on fluorescence measurements. LAMP was performed with
MD dumbbell at 4 concentrations (104, 103, 102, 10 pM respectively) and two different concentrations
of EvaGreen dyes (1X and 0.25X). As an illustration, the minimum and maximum fluorescent levels
considered for the normalization has been depicted on the brown curve.
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Figure S4. Normalized fluorescence ∆F in logarithmic scale on the y-axis as function of time for three
concentration of primers (cP = 3.2, 4.8, 7.2 µM) and three dumbbell concentrations cD = 1000, 100, 10
pM.

Figure S5. Normalized fluorescence ∆F as function of time in logarithmic scale for various concen-
trations of dNTPs (respectively cn0 = 0.93, 1.4, 2.1 mM) illustrates the lack of dependence on cn0 for
three dumbbell concentrations cD = 1000, 100, 10 pM.
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