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S1. Computational Methods 
S1.1. PDIAs Systems Construction 

The three-dimensional structure of PDIA3 and PDIA1 were obtained from the Pro-
tein Data Bank (PDB ID: 3F8U, Tapasin/ERp57 heterodimer; PDB ID: 4EL1, Crystal 
Structure of Oxidized hPDI) [3,37]. Missing loops were filled using Modeller [46] and 
PDIA3 canonical protein sequence was restored using the mutation wizard implement-
ed in Pymol [47] while residue protonation states were determined using PROPKA [48]. 
As the WCGHC active sites located in the a and a’ domains can be oxidized or reduced 
[49], both states were modeled: in the oxidized PDIA3 (PDIA3Ox) the Cys57-Cys60 and 
Cys406-Cys409 cysteine couples were bound by a disulfide bridge, while in the reduced 
form (PDIA3Red) the corresponding sulphur atoms were unbound and protonated. The 
same was done for PDIA1 oxidizing (PDIA1Ox) and reducing (PDIA1Red) the Cys53-
Cys56 and Cys397-Cys400 cysteine couples. The PDIA3 starting structure found in 3F8U 
was complexed with tapasin, therefore the oxidized and reduced PDIA3 states were also 
modeled as complexes (PDIA3Ox-Tap and PDIA3Red-Tap). The four different systems 
were subjected to molecular dynamics (MD) simulations. 

S1.2. Molecular Dynamics Simulations 
All MD simulations were carried out by means of OpenMM [50] Python library, the 

Amber ff14SB [51] force field was used, the systems were solvated in a orthorhombic pe-
riodic box with OPC [52] four-point water model and neutralized adding Na+ or Cl- 
ions, the distance between the protein and the box boundary was set to 12 Å. The final 
topology and parameters files were prepared with tLeap from AmberTools suite (ver-
sion 19) [53]. The electrostatic interactions were treated by Particle Mesh Ewald [54] al-
gorithm and non-bonded interaction cutoff was set to 10 Å. Each MD simulation was 
preceded by a preparation protocol which included a solvent geometry minimization 
followed by a whole system minimization; then the minimized systems were subjected 
to 1 ns equilibration in an NVT ensemble during which the system was gradually heated 
to 300 K while applying a weak harmonic potential restrain to the solute molecule; a 
second equilibration of 1 ns is conducted in an NPT ensemble to relax the system to den-
sity of interest while applying a weak harmonic restraint to the solute. Finally, 100 ns 
production simulations were conducted at 1 atm and 300 K in an NPT ensemble. Pres-
sure was controlled by a Monte Carlo barostat [55] while temperature was maintained 
constant using Langevin integration [56]. MD runs employed a 2 fs time step and trajec-
tory snapshots were saved every 20 ps. Punicalagin-PDIA3 complex simulations were 
conducted with the same protocol; ligands’ GAFF [57] parameters were calculated at the 
AM1-BCC [58] level of theory using antechamber [59]. 

S1.3. MD Analysis and Conformational Sampling 
Trajectory analyses were accomplished using the MDTraj [60] and pytraj [53] Py-

thon libraries, while for statistical and numerical analysis the Scikit-Learn [61], SciPy [62] 
and Numpy [63] Python libraries were used. Particularly, the conformation sampling to 
use for molecular docking simulations from the trajectories was conducted using the k-
means [64] clustering algorithm and the kernel density estimation (KDE) [65] method. 
While k-means clustering was used on the heavy atoms cartesian coordinates along the 
simulations, KDE was used on the first two principal component analysis (PCA) eigen-
vectors derived from cartesian coordinates to obtain the probability density function for 
each simulation frame. 

S1.4. α. and β-Punicalagin Preparation 
α and β-punicalagin three-dimensional structures were built using Open Babel [66]. 

All axial and all-equatorial conformers were modeled manually for α and β-punicalagin 
and geometrically optimized by energy minimization at the RM1 [67] semiempirical 
quantum mechanical level of theory using GAMESS [68]. The optimized geometries 



were subjected to 100 ns MD simulation in explicit OPC water, using GAFF parameters 
calculated at the AM1-BCC level of theory using antechamber. The MD protocol was the 
same used for protein simulations, already described in Section S1.2. The resulting α and 
β-punicalagin trajectories were then analyzed and the conformations to use for docking 
simulations were sampled using the k-means clustering algorithm on heavy atoms car-
tesian coordinates along the simulation and KDE on the first two PCA eigenvectors de-
rived from cartesian coordinates, similarly to the procedure used to sample protein con-
formations. 

S1.5. Molecular Docking and Free Energy Calculations 
Docking simulations were conducted using the Smina software by selecting the Vi-

nardo scoring function [69] retaining 5 binding poses for each run. α and β-punicalagin 
conformations sampled from MD simulations were docked on protein conformations al-
so taken from MD simulations. Ligands were docked on the a and a’ PDIA3/PDIA1 do-
mains and the two simulation boxes contained the whole a and a’ domains, respectively. 
Among the predicted binding modes obtained from the docking for further analysis 
were selected 10 characterized by the best Vinardo score and 10 characterized by the 
highest structural correlation by means of probability density function for each binding 
mode. In particular, the latter selection was achieved using the first two eigenvectors re-
trieved by PCA calculated on predicted binding modes cartesian coordinates. The 20 se-
lected binding modes were then merged with their locks, and the restating complexes 
were solvated and minimized similarly as above described. The minimized complexes 
were then used for ligand binding free energy calculations with the Molecular Mechan-
ics/Generalized Born Surface Area (MM/GBSA) [40,70] method using the MMPBSA.py 
[71] python script available in the Ambertools suite. 

S1.6. PDIA3-PDIA1 Comparison 
PDIA3 and PDIA1 aminoacidic sequences were analyzed using the Biopython [72] 

Python library to obtain sequence alignments and sequence identities between full 
length sequence and between the a and a’ domains. Alignment as well as sequence iden-
tities calculations were based on BLOSUM62 alignment matrix and results were also 
used with Pymol to visually display the conserved and non-conserved structural pat-
terns. 

S2. Computational Results 
S2.1. PDIAs Molecular Dynamics Simulations Analysis 

MD trajectories (PDIA3Ox, PDIA3Ox-Tap, PDIA3Red, PDIA3Red-Tap, PDIA1Ox and 
PDIA1Red) were analyzed collecting the backbone RMSD along the simulations. PDIA3-
Tapasin complexes (PDIA3Ox-Tap and PDIA3Red-Tap) showed lower RMSD values with 
respect to PDIA3Ox and PDIA3Red. (Figure S1A) This difference is evidenced in the RMSD 
probability density function plot (Figure S1B). This was likely due to tapasin constraints 
on the movement of both PDIA3 a and a’ domains. PDIA1Ox and PDIA1Red RMSD range 
and its trend is consistent with those observed in PDIA3Ox and PDIA3Red (Figure S1). 
However, PDIA1Red reached the equilibrium after 10 ns at an RMSD value of ~11 Å. 
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Figure S1. (A) Backbone RMSD over simulation time plot; (B) KDE distribution plot of RMSD values. 
 
To deeply evaluate PDIA3 stability and equilibration a domain wise RMSD and 

root mean square fluctuation (RMSF) calculations were used to investigate protein sta-
bility and flexibility and also to demonstrate the tapasin stabilization effect on the com-
plex. Analysis of the corresponding plots (Figure S2) clearly indicated that the system 
stabilities were comparable as RMSD values were lower than 3 Å, suggesting that the 
four PDIA3 domains are steady structures. The RMSF analysis confirmed the previous 
observations returning low values, although with some exceptions. Higher RMSF indi-
cated greater amplitude of backbone displacement for each residue during the simula-
tion. The a, b and b’ domains showed very similar RMSF trend except for some peaks 
corresponding to residues located in flexible loops. The a’ domain RMSF plot showed 
higher flexibility for PDIA3Ox and PDIA3Red located nearby the WCGHC active sites, 
suggesting that tapasin might exert a stabilizing effect on this structural pattern. Indeed, 
the WCGHC pattern in both catalytic domains were in close contact with tapasin in the 
original crystal structure (3F8U). Moreover, other portions where PDIA3Ox and PDIA3Red 
exhibit higher RMSF values than PDIA3Ox-Tap and PDIA3Red-Tap were involved in the 
PDIA3-tapasin complex interactions. 
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Figure S2. PDIA3 RMSD and RMSF domain-wise plots for: a domain (A,B), b domain (C,D), b’ domain 
(E,F), a’ domain (G,H). 
 

Also, in the case of PDIA1 the a and a’ domains’ high mobility affects the analysis of 
protein stability and flexibility has to be investigated by means of domain-wise RMSD 
and RMSF plots. (Figure S3) As for PDIA3 these plots indicate that the PDIA1 domains 
are stable structures showing RMSD values always lower than 3 Å and the PDIA1Ox and 
PDIA1Red trends are always similar. RMSF showed comparable flexibility between 
PDIA1Ox and PDIA1Red domains. 
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Figure S3. PDIA1 RMSD and RMSF domain-wise plots for: a domain (A,B), b domain (C,D), b’ domain 
(E,F), a’ domain (G,H). 
 

To investigate on the PDIA1Red RMSD trend (Figure 1S) the distance between the a 
and a’ domains along the simulations were collected (Figure S4). The values shows 
PDIA1Red switching from and open to a closed conformation during the first 10 ns (Fig-
ure S5), in agreement with experimental data that demonstrated the grater closeness be-
tween PDIA1 a and a’ domains in the reduced form.[37] 

 



 
Figure S4. Distance between PDIA1Ox and PDIA1Red a 
and a’ domains over time calculated along MD simu-
lations. 
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Figure S5. PDIA1Red in “open” (A) and closed (B) conformation. PDIA1 a domain is depicted in red, b is yellow, b’ 
is orange, a’ is blue, x linker is black, WCGHC patterns are green lines. 
 
  



S2.2. Conformation Sampling from PDIAs MD Simulations 
In order to select PDIA3 conformation to be used in the docking simulations the 

MD trajectories were analyzed and a series of snapshots were sampled using different 
approaches as following: (1) k-means clustering on heavy atoms cartesian coordinates 
during the simulations; (2) k-means clustering on the above defined “active site” heavy 
atoms along the cartesian coordinates; (3) KDE on the first two PCA components de-
rived from heavy atoms cartesian coordinates (Figure S6). 

The k-means clustering algorithm was used to partition the trajectory snapshots in k 
groups, and once the clustering was completed the closest MD frames to the cluster cen-
troids (red points in Figure S6A,C,D,F,G,I,J,L) were sampled from the trajectories and 
used for docking simulations. This method was also used on “active site”, where “active 
site” was defined as the residues in a range of 10 Å from Trp56 and Trp405, in a and a’ 
domains respectively, as from experimental evidences [16] punicalagin binding site 
should be located in proximity of these two residues. As the k-means clustering algo-
rithm accomplished the partition in k clusters assigning each MD snapshot to the closest 
cluster centroid the closest MD snapshot to the centroid was likely the most representa-
tive structure of that cluster, and the sampled structures were likely to be very different 
from each other. The k value was chosen by means of silhouette analysis [73] on k-means 
clustering algorithm: the optimal identified k values ranged from 3 to 8. Based on this re-
sult a value of k equal to 5 was chosen for all simulations. For each trajectory 5 confor-
mations were sampled using the above approaches 1 and 2 (k = 5). Differently KDE 
method was applied on the first two PCA components to obtain the probability density 
function for each frame, 5 snapshots with the highest value were sampled (red points in 
Figure S6B,E,H,K). Higher probability density function values indicate higher similarity 
and correlation between frames and the conformations sampled can be considered the 
most representative of each whole simulation. A total of 60 PDIA3 conformations (Fig-
ure S7) were thus sampled for the subsequent docking runs. 
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Figure S6. PCA representations of PDIA3 trajectories: dots are colored with respect to time (first and third 
columns), from blue to yellow, and density (second column), from black to yellow. The first row (A–C) is 
referred to PDIA3Ox trajectory, the second (D–F) to PDIA3Ox-Tap, the third (G–I) to PDIA3Red and the fourth 
(J–L) to PDIA3Red-Tap. In the first column (A,D,G,J) the PCA is calculated on the heavy atoms cartesian co-
ordinates along the trajectories, the red dots are the k-means cluster centroids. In the second column 
(B,E,H,K) is reported the same PCA as for the first column but dots are colored with respect to probability 
density function, the red dost are the frames with the highest probability value. In the third column 
(C,F,I,L) is the depicted the PCA for “active site” cartesian coordinates along the simulations, the red dots 
are the k-means cluster centroids. On the plot axis are reported the explained variance for each eigenvector. 
 

 
Figure S7. PDIA3 selected conformations from MD simulations. 

 
To sample PDIA1 conformations for the subsequent docking simulations the 

PDIA1Ox and PDIA1Red trajectories were analyzed, and a series of snapshots were taken 
in the same fashion as above described for PDIA3. Trajectories were then analyzed with 



the three approaches: k-means clustering on heavy atoms cartesian coordinates, k-means 
clustering on “active site” heavy atoms and KDE on the first two PCA components de-
rived from heavy atoms cartesian coordinates. (Figure S8) Also, in this case the “active 
sites” was defined as the residues in a range of 10 Å from Trp52 and Trp396 in the a and 
a’ domains, respectively. With each of the above-mentioned methods 5 simulation snap-
shots were sampled for a total of 30 PDIA1 conformations for subsequent docking runs. 
(Figure S9) 
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Figure S8. PCA representations of PDIA1 trajectories: dots are colored with respect to time (first and third 
columns), from blue to yellow, and density (second column), from black to yellow. The first row (A–C) is 
referred to PDIA1Ox trajectory, the second (D–F) to PDIA1Red. In the first column (A,D) the PCA is calculat-
ed on the heavy atoms cartesian coordinates along the trajectories, the red dots are the k-means cluster cen-
troids. In the second column (B,E) is reported the same PCA as for the first column but dots are colored 
with respect to probability density function, the red dost are the five with the highest probability value. In 
the third column (C,F) is the depicted the PCA for “active site” cartesian coordinates along the simulations, 
the red dots are the k-means cluster centroids. On the plot axis are reported the explained variance for each 
eigenvector. 
 



 
Figure S9. PDIA1 selected conformations from MD simulations. 

 
 

S2.3. α. and β-Punicalagin MD Simulations 
As α and β- are characterized by a cyclized highly constrained chemical structure 

and considering the smina limitations molecular docking were done using a rigid body 
docking procedure. To fulfill this lack of conformational flexibility, MD simulations of α 
and β-punicalagin were carried out to sample punicalagin conformations. The initial 
punicalagin structures were modeled in the all-axial and all-equatorial conformations 
and minimized at the RM1 level of theory. (Figure S10) As expected, all-equatorial con-
formations were the most stable for either the α or β epimers. In particular, β-
punicalagin showed lower energies than α-punicalagin. The four structures were sub-
jected to 100 ns MD simulation. Notably, for both α and β-punicalagin the all-axial con-
formations were converted to the all-equatorial ones within the first 5 ns of simulation in 
agreement with the semi-empirical quantum mechanical calculations. Punicalagin con-
formations were sampled using two of the three approaches above described for the 
PDIA3 conformation sampling: (1) k-means on heavy atoms cartesian coordinates; (2) 
KDE on first two PCA components derived from heavy atoms cartesian coordinates. 
Therefore, a total of 80 α and β-punicalagin conformations were selected for docking 
simulations. 
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Scheme S1. α and β-punicalagin 2D depictions 
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Figure S10. α and β-punicalagin in all-axial and all-equatorial con-
formations. 

 
  



S2.4. PDIA3 Molecular Docking Simulations 
The selected α and β-punicalagin conformations were docked onto the a and a’ do-

mains of the selected PDIA3 conformations returning 24,000 binding poses for each 
PDIA3 domain. Binding modes selection for further studies have been carried out basing 
on Vinardo score ranking and by statistical approach applying kernel density estimation 
(KDE) on poses’ heavy atoms cartesian coordinates first two principal components. The 
selected binding poses were used for free energy calculations for final rescoring and se-
lect the most likely binding conformation. 
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Figure S11. Selected α and β-punicalagin binding modes for a (A) and a’ (B) PDIA3 domains: conformation 
selected by Vinardo score are depicted in red, while those selected by structural correlation are depicted in 
blue. 
 
  



S2.5. PDIA3 Free Energy Calculations 
The docked keys were merged with the respective locks, then solvated, minimized 

subjected to free energy estimation by means of MM/GBSA calculations. Results evi-
denced the higher affinity of α and β-punicalagin for PDIA3Ox, while a’ seems to be the 
preferential binding domain. In both domains β-punicalagin showed higher affinity 
with respect to the α form. Results analysis started with ranking of binding modes by 
calculated free energy value: for the a domain the first two ranked binding modes (Fig-
ure S12A), −39.2 and −37.1 kcal mol−1 respectively, are almost identical while the third 
ranked (Figure S12B), −35.2 kcal mol−1, is quite different since the ligand is settled on the 
other domain face; for the a’ domain the top ranked binding mode (Figure 6A) is well 
detached from the other poses (−49.9 kcal mol−1), showing a difference with the second 
ranked pose of ~8 kcal mol−1. 

α and β-punicalagin free energy results on the a domain displayed the first two 
ranked binding modes (Figure S12A), −39.2 and −37.1 kcal mol−1 respectively, being al-
most identical while the third ranked one (Figure S12B), −35.2 kcal mol−1, is quite differ-
ent since the ligand is settled on the other domain face; for the a’ domain the top ranked 
binding mode (Figure 6A) is well detached from the other poses, showing a difference 
with the second ranked pose of ~8 kcal mol−1. 
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Figure S12. Minimized binding modes of β-punicalagin on PDIA3 a domain. (A) lowest energy predicted 
binding mode (−39.2 kcal mol−1); (B) third ranked binding mode (−35.2 kcal mol−1). 
 
  



S2.6. MD Simulation on Best PDIA3-Punicalagin Complex 
As the predicted binding mode was not found in close contact with quenching resi-

due Trp405 and to understand how β-punicalagin could alter PDIA3 structure, a further 
analysis was conducted by means of 100 ns MD simulation. Trp405 solvent accessible 
surface area (SASA) collected along the simulation retunerd a different trend in compar-
ison with PDIA3Ox and PDIA3Red simulations (Figure 7A). Indeed, the Trp405 SASA for 
the β-punicalagin complex (PDIA3Ox-Pun) showed a Trp405 burial in the second half of 
the simulation due to the a and a’ domains approaching each to the other to make con-
tacts adopting a “closed” conformation (Figure 7C–D). RMSD analysis of PDIA3Ox-Pun 
(Figure S13A) returned a trend consistent to PDIA3Ox and PDIA3Red while RMSF (Figure 
S13B) indicate a reduced flexibility of PDIA3Ox-Pun complex with respect to PDIA3Ox 
and Red-PDIA3. 
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Figure S13. RMSD (A) and RMSF (B) plots comparing all PDIA3 trajectories presented in this work including 
PDIA3Ox-Pun. 
 
  



S2.7. PDIA1 Molecular Docking Simulations 
As for PDIA3, selected α and β-punicalagin conformations were docked into the a 

and a’ domains of selected PDIA1 snapshots returning 12,000 binding poses for each 
PDIA1 catalytic domain. Binding modes selection for free energy calculations have been 
carried out basing on Vinardo score ranking and by statistical approach applying kernel 
density estimation (KDE) on poses’ heavy atoms cartesian coordinates first two principal 
components, as already done for PDIA3. Selected docking results on the a domain (Fig-
ure S14A) showed two distinct conformations clusters matching the two selection ap-
proaches. Selected docking results on the a’ domain (Figures S14B and S15) were mainly 
grouped into a cluster, except for few poses located at the a’/b’ domains interface. The 
binding pocket in the a’ domain mainly occupied by the most correlated binding poses 
(blue sticks in Figure S14B) was the same pocket identified as punicalagin binding site 
on PDIA3 a’ domain, while the poses located at the a’/b’ domains interface occupy a hy-
drophobic pocket only available in the PDIA1Red “closed” conformation. (Figure S15) 

 

  

A B 
Figure S14. Selected α and β-punicalagin binding modes for a (A) and a’ (B) PDIA1 domains: conformation se-
lected by Vinardo score are depicted in red, while those selected by structural correlation are depicted in blue. 
 



 
Figure S15. Selected α and β-punicalagin binding modes for a’ PDIA1 domains displayed on the 
whole PDIA1 structure: conformation selected by Vinardo score are depicted in red, while those 
selected by structural correlation are depicted in blue. 

 
  



S2.8. PDIA1 Free Energy Calculations 
As for PDIA3, the selected PDIA1-punicalagin complexes for both the a and a’ do-

mains subjected to MM/PBSA free energy calculations. Results indicated a’ as preferen-
tial punicalagin PDIA1 binding domain and β-punicalagin as favored epimer for both 
catalytic domains. Contrary to what seen for PDIA3, calculations evidenced higher 
punicalagin affinity for PDIA1Red. The top ranked calculated binding free energy for β-
punicalagin on PDIA1 a domain was −42.7 kcal mol−1 while its best binding free energy 
on the a’ domain was −56.8 kcal mol−1. The first five top ranked binding modes of β-
punicalagin on PDIA1 a domain, lying in a range of ~5 kcal mol−1 were quite similar to 
each other and the first two (−42.7 and −42.2 kcal mol−1 respectively) were almost identi-
cal. The top ranked punicalagin binding mode (Figure S16) was associated with PDIA1Ox 
while the second with PDIA1Red. Results for PDIA1 a’ domain showed the top ranked 
binding mode (Figure S17) well detached from the other poses, with a difference of ~11 
kcal mol−1 with the second one (−56.8 and −45.3 kcal mol−1 respectively). A β-punicalagin 
binding mode targeting the same pocket as for the best on PDIA3Ox was characterized by 
a binding free energy of −43.2 kcal mol−1. 

 

 
Figure S16. Top ranked binding mode of β-punicalagin on 
PDIA1 a domain (−42.7 kcal mol−1). 
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Figure S17. Lowest energy predicted binding mode for β-punicalagin on PDIA1 a’ domain. A and B show the same 
pose from two different views. Residues within a distance range of 5 Å are depicted as lines. 

 
 
  



References 
1. Hettinghouse, A.; Liu, R.; Liu, C. J. Multifunctional Molecule ERp57: From Cancer to Neurodegenerative Diseases. Pharmacol 

Ther. 2018, 181, 34-48, doi:10.1016/j.pharmthera.2017.07.011 
2. Frickel, E. M.; Frei, P.; Bouvier, M.; Stafford, W. F.; Helenius, A.; Glockshuber, R.; Ellgaard, L. ERp57 Is a Multifunctional Thi-

ol-Disulfide Oxidoreductase. J. Biol. Chem. 2004, 279 (18), 18277–18287, doi:10.1074/jbc.M314089200. 
3. Dong, G.; Wearsch, P. A.; Peaper, D. R.; Cresswell, P.; Reinisch, K. M. Insights into MHC Class I Peptide Loading from the 

Structure of the Tapasin-ERp57 Thiol Oxidoreductase Heterodimer. Immunity 2009, 30 (1), 21–32, 
doi:10.1016/j.immuni.2008.10.018. 

4. Silvennoinen, L.; Myllyharju, J.; Ruoppolo, M.; Orrù, S.; Caterino, M.; Kivirikko, K. I.; Koivunen, P. Identification and Charac-
terization of Structural Domains of Human ERp57: Association with Calreticulin Requires Several Domains. J. Biol. Chem. 
2004, 279(14), 13607-15, doi:10.1074/jbc.M313054200. 

5. Turano, C.; Gaucci, E.; Grillo, C.; Chichiarelli, S. ERp57/GRP58: A Protein with Multiple Functions. Cellular and Molecular Biol-
ogy Letters 2011, 16, 539–563, doi:10.2478/s11658-011-0022-z. 

6. Jessop, C. E.; Chakravarthi, S.; Garbi, N.; Hämmerling, G. J.; Lovell, S.; Bulleid, N. J. ERp57 Is Essential for Efficient Folding of 
Glycoproteins Sharing Common Structural Domains. EMBO J. 2007, 26(1), 28-40, doi:10.1038/sj.emboj.7601505. 

7. Santos, S. G.; Campbell, E. C.; Lynch, S.; Wong, V.; Antoniou, A. N.; Powis, S. J. Major Histocompatibility Complex Class I-
ERp57-Tapasin Interactions within the Peptide-Loading Complex. J. Biol. Chem. 2007, 282(24), 17587-17593, 
doi:10.1074/jbc.M702212200. 

8. Nemere, I.; Garbi, N.; Hammerling, G.; Hintze, K. J. Role of the 1,25D 3-MARRS Receptor in the 1,25(OH) 2D 3-Stimulated 
Uptake of Calcium and Phosphate in Intestinal Cells. Steroids 2012, 77(10), 897-902, doi:10.1016/j.steroids.2012.04.002. 

9. Chichiarelli, S.; Gaucci, E.; Ferraro, A.; Grillo, C.; Altieri, F.; Cocchiola, R.; Arcangeli, V.; Turano, C.; Eufemi, M. Role of ERp57 
in the Signaling and Transcriptional Activity of STAT3 in a Melanoma Cell Line. Arch. Biochem. Biophys. 2010, 494(2), 178-183, 
doi:10.1016/j.abb.2009.12.004. 

10. Chamberlain, N.; Korwin-Mihavics, B. R.; Nakada, E. M.; Bruno, S. R.; Heppner, D. E.; Chapman, D. G.; Hoffman, S. M.; van 
der Vliet, A.; Suratt, B. T.; Dienz, O.; Alcorn, J. F.; Anathy, V. Lung Epithelial Protein Disulfide Isomerase A3 (PDIA3) Plays an 
Important Role in Influenza Infection, Inflammation, and Airway Mechanics. Redox Biol. 2019, 101129, 
doi:10.1016/j.redox.2019.101129. 

11. Kondo, R.; Ishino, K.; Wada, R.; Takata, H.; Peng, W. X.; Kudo, M.; Kure, S.; Kaneya, Y.; Taniai, N.; Yoshida, H.; Naito, Z. 
Downregulation of Protein Disulfide-Isomerase A3 Expression Inhibits Cell Proliferation and Induces Apoptosis through 
STAT3 Signaling in Hepatocellular Carcinoma. Int. J. Oncol. 2019, 54 (4), 1409–1421, doi:10.3892/ijo.2019.4710. 

12. Li, S.; Zhao, X.; Chang, S.; Li, Y.; Guo, M.; Guan, Y. ERp57-Small Interfering RNA Silencing Can Enhance the Sensitivity of 
Drug-Resistant Human Ovarian Cancer Cells to Paclitaxel. Int. J. Oncol. 2019, 54 (1), 249–260, doi:10.3892/ijo.2018.4628. 

13. Ye, Q.; Fu, P.; Dou, J.; Wang, N. Downregulation of PDIA3 Inhibits Proliferation and Invasion of Human Acute Myeloid Leu-
kemia Cells. Onco. Targets. Ther. 2018, 11, 2925–2935, doi:10.2147/OTT.S162407. 

14. Zou, H.; Wen, C.; Peng, Z.; Shao, Y. Y.; Hu, L.; Li, S.; Li, C.; Zhou, H. H. P4HB and PDIA3 Are Associated with Tumor Pro-
gression and Therapeutic Outcome of Diffuse Gliomas. Oncol. Rep. 2018, 39 (2), 501–510, doi:10.3892/or.2017.6134. 

15. Yang, Z.; Liu, J.; Shi, Q.; Chao, Y.; Di, Y.; Sun, J.; Zhang, J.; Huang, L.; Guo, H.; He, C. Expression of Protein Disulfide Isomer-
ase A3 Precursor in Colorectal Cancer. Onco. Targets. Ther. 2018, 11, 4159–4166, doi:10.2147/OTT.S154452. 

16. Giamogante, F.; Marrocco, I.; Cervoni, L.; Eufemi, M.; Chichiarelli, S.; Altieri, F. Punicalagin, an Active Pomegranate 
Component, Is a New Inhibitor of PDIA3 Reductase Activity. Biochimie 2018, 147, 122-129, doi:10.1016/j.biochi.2018.01.008. 

17. Khatib, M.; Innocenti, M.; Giuliani, C.; Al- Tamimi, A.; Romani, A.; Mulinacci, N. Mesocarp and Exocarp of Laffan and 
Wonderful Pomegranate Varieties: By-Products as a Source of Ellagitannins. Int. J. Food Nutr. Sci. 2017, 4 (1), 60–66, 
doi:10.15436/2377-0619.17.1465. 

18. Chen, P. S.; Li, J. H.; Liu, T. Y.; Lin, T. C. Folk Medicine Terminalia Catappa and Its Major Tannin Component, Punicalagin, 
Are Effective against Bleomycin-Induced Genotoxicity in Chinese Hamster Ovary Cells. Cancer Lett. 2000, 152 (2), 115–122, 
doi:10.1016/S0304-3835(99)00395-X. 

19. Marzouk, M. S. A.; El-Toumy, S. A. A.; Moharram, F. A.; Shalaby, N. M. M.; Ahmed, A. A. E. Pharmacologically Active 
Ellagitannins from Terminalia Myriocarpa. Planta Med. 2002, 68 (6), 523–527, doi:10.1055/s-2002-32549. 

20. Asres, K.; Bucar, F.; Knauder, E.; Yardley, V.; Kendrick, H.; Croft, S. L. In Vitro Antiprotozoal Activity of Extract and 
Compounds from the Stem Bark of Combretum Molle. Phyther. Res. 2001, 15 (7), 613–617, doi:10.1002/ptr.897. 

21. Ismail, T.; Sestili, P.; Akhtar, S. Pomegranate Peel and Fruit Extracts: A Review of Potential Anti-Inflammatory and Anti-
Infective Effects. Journal of Ethnopharmacology 2012, 143(2), 397-405, doi:10.1016/j.jep.2012.07.004. 

22. Turrini, E.; Ferruzzi, L.; Fimognari, C. Potential Effects of Pomegranate Polyphenols in Cancer Prevention and Therapy. 
Oxidative Medicine and Cellular Longevity 2015, 2015:938475, doi:10.1155/2015/938475. 

23. Wang, L.; Wang, X.; Wang, C. C. Protein Disulfide-Isomerase, a Folding Catalyst and a Redox-Regulated Chaperone. Free 
Radic. Biol. Med. 2015, 83, 305–313, doi:10.1016/j.freeradbiomed.2015.02.007. 

24. Kozlov, G.; Määttänen, P.; Thomas, D. Y.; Gehring, K. A Structural Overview of the PDI Family of Proteins. FEBS Journal. 
277(19), 3924–3936, doi:10.1111/j.1742-4658.2010.07793.x. 

25. Coppari, S.; Altieri, F.; Ferraro, A.; Chichiarelli, S.; Eufemi, M.; Turano, C. Nuclear Localization and DNA Interaction of 
Protein Disulfide Isomerase ERp57 in Mammalian Cells. J. Cell. Biochem. 2002, 85(2), 325-333, doi:10.1002/jcb.10137. 



26. Nguyen, V. D.; Saaranen, M. J.; Karala, A. R.; Lappi, A. K.; Wang, L.; Raykhel, I. B.; Alanen, H. I.; Salo, K. E. H.; Wang, C. C.; 
Ruddock, L. W. Two Endoplasmic Reticulum PDI Peroxidases Increase the Efficiency of the Use of Peroxide during Disulfide 
Bond Formation. J. Mol. Biol. 2011, 406 (3), 503–515, doi:10.1016/j.jmb.2010.12.039. 

27. Giamogante, F.; Marrocco, I.; Romaniello, D.; Eufemi, M.; Chichiarelli, S.; Altieri, F. Comparative Analysis of the Interaction 
between Different Flavonoids and PDIA3. Oxid. Med. Cell. Longev. 2016, 2016:4518281, doi:10.1155/2016/4518281. 

28. Raturi, A.; Mutus, B. Characterization of Redox State and Reductase Activity of Protein Disulfide Isomerase under Different 
Redox Environments Using a Sensitive Fluorescent Assay. Free Radic. Biol. Med. 2007, 43(1), 62-70, 
doi:10.1016/j.freeradbiomed.2007.03.025. 

29. Trnková, L.; Ricci, D.; Grillo, C.; Colotti, G.; Altieri, F. Green Tea Catechins Can Bind and Modify ERp57/PDIA3 Activity. 
Biochim. Biophys. Acta - Gen. Subj. 2013, 1830(3), 2671-2682, doi:10.1016/j.bbagen.2012.11.011. 

30. Ghisaidoobe, A. B. T.; Chung, S. J. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on 
Förster Resonance Energy Transfer Techniques. International Journal of Molecular Sciences. 2014, 15(12), 22518-22538, 
doi:10.3390/ijms151222518. 

31. Lakowicz, J. R.; Weber, G. Quenching of Fluorescence by Oxygen. Probe for Structural Fluctuations in Macromolecules. 
Biochemistry 1973, 12(21), 4161-4170, doi:10.1021/bi00745a020. 

32. Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: New York, NY, USA, 2006; Quenching of Fluorescence, pp.  
277-330, doi:10.1007/978-0-387-46312-4. 

33. Ware, W. R. Oxygen Quenching of Fluorescence in Solution: An Experimental Study of the Diffusion Process. J. Phys. Chem. 
1962, 66 (3), 455-458, doi:10.1021/j100809a020. 

34. Bi, S.; Song, D.; Tian, Y.; Zhou, X.; Liu, Z.; Zhang, H. Molecular Spectroscopic Study on the Interaction of Tetracyclines with 
Serum Albumins. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2005, 61(4), 629-636, doi:10.1016/j.saa.2004.05.028. 

35. Sun, Y.; Zhang, H.; Sun, Y.; Zhang, Y.; Liu, H.; Cheng, J.; Bi, S.; Zhang, H. Study of Interaction between Protein and Main 
Active Components in Citrus Aurantium L. by Optical Spectroscopy. J. Lumin. 2010, 130 (2), 270-279, 
doi:10.1016/j.jlumin.2009.09.002. 

36. Du, X.; Li, Y.; Xia, Y. L.; Ai, S. M.; Liang, J.; Sang, P.; Ji, X. L.; Liu, S. Q. Insights into Protein–Ligand Interactions: Mechanisms, 
Models, and Methods. International Journal of Molecular Sciences 2016, 17(2), 144, doi:10.3390/ijms17020144. 

37. Wang, C.; Li, W.; Ren, J.; Fang, J.; Ke, H.; Gong, W.; Feng, W.; Wang, C. C. Structural Insights into the Redox-Regulated 
Dynamic Conformations of Human Protein Disulfide Isomerase. Antioxidants and Redox Signaling. 2013, 19(1), 36-45, 
doi:10.1089/ars.2012.4630. 

38. Khan, H. A.; Mutus, B. Protein Disulfide Isomerase a Multifunctional Protein with Multiple Physiological Roles. Frontiers in 
Chemistry 2014, 2, 70, doi:10.3389/fchem.2014.00070. 

39. Ragno, R.; Frasca, S.; Manetti, F.; Brizzi, A.; Massa, S. HIV-Reverse Transcriptase Inhibition: Inclusion of Ligand-Induced Fit 
by Cross-Docking Studies. J. Med. Chem. 2005, 48 (1), 200–212, doi:10.1021/jm0493921. 

40. Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, 
P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E. Calculating Structures and Free Energies of Complex Molecules: Combining 
Molecular Mechanics and Continuum Models. Acc. Chem. Res. 2000, 33 (212), 889-897. https://doi.org/10.1021/ar000033j. 

41. Bastos, T. M.; Botelho, M.; Soares, P.; Franco, C. H.; Alc, L.; Antonini, L.; Sabatino, M.; Mautone, N.; Freitas-junior, L. H.; 
Moraes, C. B.; Ragno, R.; Rotili, D.; Schenkman, S.; Mai, A.; Moretti, N. S. Identification of Inhibitors to Trypanosoma Cruzi 
Sirtuins Based on Compounds Developed to Human Enzymes. Int J Mol Sci. 2020, 21(10), 3659, doi:10.3390/ijms21103659. 

42. Freedman, R. B.; Desmond, J. L.; Byrne, L. J.; Heal, J. W.; Howard, M. J.; Sanghera, N.; Walker, K. L.; Wallis, A. K.; Wells, S. A.; 
Williamson, R. A.; Römer, R. A. ‘Something in the Way She Moves’: The Functional Significance of Flexibility in the Multiple 
Roles of Protein Disulfide Isomerase (PDI). Biochim. Biophys. Acta - Proteins Proteomics 2017, 1865 (11), 1383–1394, 
doi:10.1016/j.bbapap.2017.08.014. 

43. Römer, R. A.; Wells, S. A.; Emilio Jimenez-Roldan, J.; Bhattacharyya, M.; Vishweshwara, S.; Freedman, R. B. The Flexibility 
and Dynamics of Protein Disulfide Isomerase. Proteins Struct. Funct. Bioinforma. 2016, 84 (12), 1776–1785, 
doi:10.1002/prot.25159. 

44. Wang, C.; Chen, S.; Wang, X.; Wang, L.; Wallis, A. K.; Freedman, R. B.; Wang, C. C. Plasticity of Human Protein Disulfide 
Isomerase: Evidence for Mobility around the x-Linker Region and Its Functional Significance. J. Biol. Chem. 2010, 285 (35), 
26788–26797, doi:10.1074/jbc.M110.107839. 

45. Guyette, J.; Evangelista, B.; Tatulian, S. A.; Teter, K. Stability and Conformational Resilience of Protein Disulfide Isomerase. 
Biochemistry 2019, 58 (34), 3572–3584, doi:10.1021/acs.biochem.9b00405. 

46. Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinforma. 2016, 54, 5.6.1-5.6.37. 
47. The PyMOL Molecular Graphics System. Version 2.0; Schrödinger, LLC: New York, NY, USA.  
48. Olsson, M. H. M.; SØndergaard, C. R.; Rostkowski, M.; Jensen, J. H. PROPKA3: Consistent Treatment of Internal and Surface 

Residues in Empirical p K a Predictions. J. Chem. Theory Comput. 2011, 7 (2), 525–537. https://doi.org/10.1021/ct100578z. 
49. Darby, N. J.; Creighton, T. E. Functional Properties of the Individual Thioredoxin-like Domains of Protein Disulfide 

Isomerase. Biochemistry 1995, 34 (37), 11725-35. https://doi.org/10.1021/bi00037a009. 
50. Eastman, P.; Swails, J.; Chodera, J. D.; McGibbon, R. T.; Zhao, Y.; Beauchamp, K. A.; Wang, L. P.; Simmonett, A. C.; Harrigan, 

M. P.; Stern, C. D.; Wiewiora, R. P.; Brooks, B. R.; Pande, V. S. OpenMM 7: Rapid Development of High Performance 
Algorithms for Molecular Dynamics. PLoS Comput. Biol. 2017, 13 (7), 1–17. https://doi.org/10.1371/journal.pcbi.1005659. 



51. Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. Ff14SB: Improving the Accuracy of 
Protein Side Chain and Backbone Parameters from Ff99SB. J. Chem. Theory Comput. 2015, 11, 8, 3696–3713. 
https://doi.org/10.1021/acs.jctc.5b00255. 

52. Izadi, S.; Anandakrishnan, R.; Onufriev, A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 21, 
3863–3871. https://doi.org/10.1021/jz501780a. 

53. D.A. Case, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E. Cheatham, III, V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, D. 
Ghoreishi, G. Giambasu, et al. 2019, Amber 2019, University of California, San Francisco, CA, USA, 2019. 

54. Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N·log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 
1993, 18, 10089-10092. https://doi.org/10.1063/1.464397. 

55. Chow, K. H.; Ferguson, D. M. Isothermal-Isobaric Molecular Dynamics Simulations with Monte Carlo Volume Sampling. 
Comput. Phys. Commun. 1995, 91 (1-3), 283-289. https://doi.org/10.1016/0010-4655(95)00059-O. 

56. Lzaguirre, J. A.; Catarello, D. P.; Wozniak, J. M.; Skeel, R. D. Langevin Stabilization of Molecular Dynamics. J. Chem. Phys. 
2001, 144, 2090. https://doi.org/10.1063/1.1332996. 

57. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and testing of a general Amber force field. J. 
Comput. Chem 2004, 25 (9), 1157-1174. doi:10.1002/jcc.20035 

58. Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: 
I. Method. J. Comput. Chem. 2000, 21 (2) : 132-146. https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<132::AID-
JCC5>3.0.CO;2-P. 

59. Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. Automatic atom type and bond type perception in molecular mechanical 
calculations. J. Mol. Graph. Model., 2006, 25 (2), 247-260. https://10.1016/j.jmgm.2005.12.005. 

60. McGibbon, R. T.; Beauchamp, K. A.; Harrigan, M. P.; Klein, C.; Swails, J. M.; Hernández, C. X.; Schwantes, C. R.; Wang, L. P.; 
Lane, T. J.; Pande, V. S. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophys. J. 2015, 
109 (8), 1528-1532. https://doi.org/10.1016/j.bpj.2015.08.015. 

61. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; 
Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, É. Scikit-Learn: Machine 
Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825-2830. 

62. Virtanen, P.; Gommers, R.; Oliphant, T.E., Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, 
W.; Bright, J.; et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020, 17, 261–272. 
https://doi.org/10.1038/s41592-019-0686-2. 

63. Harris, C.R.; Millman, K. J.; vad der Walt, S. J., Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; 
Smith, N.J.; et al. Array programming with NumPy. Nature, 2020. 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2. 

64. Lloyd, S. P. Least Squares Quantization in PCM. IEEE Trans. Inf. Theory 1982, 18 (2), 129-137. 
https://doi.org/10.1109/TIT.1982.1056489. 

65. Scott, D. W. Multivariate Density Estimation: Theory, Practice, and Visualization: Second Edition; John Wiley & Sons, Inc.: 
Hoboken, NJ, USA, 2015. https://doi.org/10.1002/9781118575574. 

66. O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. Open Babel: An Open Chemical 
Toolbox. J. Cheminform. 2011, 3, 33. https://doi.org/10.1186/1758-2946-3-33. 

67. Rocha, G. B.; Freire, R. O.; Simas, A. M.; Stewart, J. J. P. RM1: A Reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and 
I. J. Comput. Chem. 2006, 27 (10),1101-1111. https://doi.org/10.1002/jcc.20425. 

68. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. 
A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. General Atomic and Molecular Electronic Structure System. J. 
Comput. Chem. 1993, 14 (11), 1347-1363. https://doi.org/10.1002/jcc.540141112. 

69. Quiroga, R.; Villarreal, M. A. Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual 
Screening. PLoS One 2016, 11, e0155183. https://doi.org/10.1371/journal.pone.0155183. 

70. Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of 
Binding Free Energy Calculations Based on Molecular Dynamics Simulations. J. Chem. Inf. Model. 2011, 51 (1), 69-82. 
https://doi.org/10.1021/ci100275a. 

71. Miller, B. R., 3rd; McGee, T. D., Jr.; Swails, J. M.; Homeyer, N.; Gohlke, H.; Roitberg, A. E., MMPBSA.py: An Efficient Program 
for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8 (9), 3314-21. https://doi.org/10.1021/ct300418h. 

72. Cock, P. J. A.; Antao, T.; Chang, J. T.; Chapman, B. A.; Cox, C. J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, 
B.; De Hoon, M. J. L. Biopython: Freely Available Python Tools for Computational Molecular Biology and Bioinformatics. 
Bioinformatics 2009, 25 (11), 1422-1423- https://doi.org/10.1093/bioinformatics/btp163. 

73. Rousseeuw, P. J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 
1987, 20, 53-65. https://doi.org/10.1016/0377-0427(87)90125-7. 


