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Supplementary Methods  

Method S1. The validation of nucleobase filtering algorithm with dynamic threshold 

 The base quality score (Phred quality score) is widely used to measure the effectiveness 

of filtering algorithms. This study uses an approach that based on comparing the average base 

quality score [1] to verify the effectiveness of dynamic threshold base filtering algorithms. We 

use Eq. S1 to compare the average base quality score at each site on the positive- and negative-

sense reference genome of our dynamic filtering algorithm with several commonly used 

algorithms (unfiltered, seqtk, fastp, sickle).  

𝑄 =
∑ 𝑄

𝑛
(S1) 

Here, 𝑛 represents the total number of bases at each site, 𝑄  represents the base quality 

of base 𝑖, 𝑖 = 1,2, … , 𝑛.  

Next, we use Shapiro-Wilk test [2] (Eq. S2) to test the normality of the computed results. 

𝑊 =
(∑ 𝑎 𝑥 )

∑ (𝑥 − 𝑥)
(S2) 

Here, 𝑥   represents the 𝑖 th order statistic; 𝑥  represents the sample mean; the 

coefficients 𝑎  are given by vector (𝑎 , … , 𝑎 ) = 𝑚 𝑉 (𝑚 𝑉 𝑉 𝑚) /⁄ , where vector 

𝑚 = (𝑚 , … , 𝑚 )  is the expected vector of the order statistics of independent and identically 

distributed random variables sampled from the standard normal distribution, and 𝑉  is the 

covariance matrix of these normal order statistics. If the test result of the sample is less than the 

chosen alpha level, then there is evidence that the sample are not normally distributed [3]. 

Subsequently, we use the Mann-Whitney U test [4] to test the significance of difference 

between the base quality score on reference genome that processed by the nucleobase filtering 

algorithm with dynamic threshold and the other four filtering methods (group settings can be 

referred in Table S2). Accordingly, we mix two sets of sample data and assign numeric ranks 

in ascending order to the mixed data, where the smallest data is assigned by 1 and the second 

smallest data by 2, etc. Where there are groups of tied data, we assign ranks that equal to the 

mean value of their unadjusted ranks. Then, we compute the sum of ranks in two sets 𝑇  and 

𝑇 , respectively. Finally, the Mann-Whitney U test is performed on the two sets of data by Eq. 

S3. 



 

 

𝑍 =
𝑈 −

𝑛 𝑛
2

𝑛 𝑛 (𝑛 + 𝑛 + 1)
12

(S3) 

Here, 𝑈 = min {
( )

− 𝑇 ,
( )

− 𝑇 }, where 𝑛  and 𝑛  is the size 

for sample 1 and 2, respectively, 𝑇  and 𝑇  is the sum of the ranks in sample 1 and 2, 

respectively. If the test result of sample 1 and 2 is less than the chosen alpha level, then there 

is evidence that the sample 1 and 2 is statistically different.  

The results of the test of significance are listed in Table S3 and S4. It is clearly that that 

the nucleobase filtering algorithm with dynamic threshold is statistically effective to filter 

low-quality sequencing data than other four algorithms.  

 

Method S2. The computation of mutation probability matrix by nucleobase mutation 

probabilities 

The computation of the mutation probability matrix 𝑃 , ={𝑝 , }（Eq. 6） is comprised 

of two scenarios: locating the mutation probability term 𝑟  for each base 𝑖 (Eq. 4) and the 

probability term 𝑚 ,  that base 𝑖 mutates to base 𝑗 in the mutation spectra. 

The 𝑛  term in 𝑟  can be computed from Eq. 5, where mutation_rate = 10  [5] and 

𝑔𝑒𝑜_𝑙𝑒𝑛 ≈ 3 × 10   (length of the SARS-CoV-2 reference genome) for base 𝑖 ; the 𝑛  

term is the length of the coding region on SARS-CoV-2 reference genome, which has 29260 

bases in total [6]. Therefore, 𝑟 = 𝑟 = 𝑟 = 𝑟 = 𝑟 =3/29260. In addition, the 𝑚 ,  is from 

our previous research (Table S5) [7]. The above 𝑟   and 𝑚 ,   values are inputted into the 

mutation probability matrix (Eq. 6) to compute its value (Eq. 10).  

 

Method S3. The computation of maximum number of stop codons during mutation 

In order to investigate whether viral genomic sequence have a long-term accumulation of 

the distribution of stop codons, we carry out mutation simulation according to Methods 2.2.1 

and computed the number of stop codons within each window length (300 bases) after each 

step of simulation 𝑁𝑢𝑚_𝑆𝐶(𝑠𝑡𝑒𝑝, 𝑤𝑖𝑛_𝑙𝑒𝑛). We then calculated the number of stop codons 

within each window length in that simulation where the maximum number of stop codons 

occurred during the mutation by Eq. S4. 



 

 

𝑀𝑎𝑥𝑁𝑢𝑚_𝑆𝐶(𝑤𝑖𝑛_𝑙𝑒𝑛) = max [𝑁𝑢𝑚_𝑆𝐶(𝑠𝑡𝑒𝑝, 𝑤𝑖𝑛_𝑙𝑒𝑛)] (𝑆4) 

Next, to reduce the randomness caused in one time of simulation, we repeat the simulation 

𝑟𝑢𝑛_𝑡𝑖𝑚𝑒𝑠 = 100 times, and then we compute average 𝑀𝑎𝑥𝑁𝑢𝑚_𝑆𝐶(𝑤𝑖𝑛_𝑙𝑒𝑛) by Eq. S5 

𝐴𝑣𝑒𝑟_𝑀𝑎𝑥𝑁𝑢𝑚_𝑆𝐶(𝑤𝑖𝑛_𝑙𝑒𝑛) =
∑ 𝑀𝑎𝑥𝑁𝑢𝑚_𝑆𝐶(𝑤𝑖𝑛_𝑙𝑒𝑛)_

𝑟𝑢𝑛_𝑡𝑖𝑚𝑒𝑠
 (𝑆5) 

Finally, we investigate the distribution of stop codons at each site on the reference genome 

during mutation with 𝐴𝑣𝑒𝑟_𝑀𝑎𝑥𝑁𝑢𝑚_𝑆𝐶(𝑤𝑖𝑛_𝑙𝑒𝑛) as the maximum number of stop codons 

during mutation (Figure 6). 

  



Supplementary Figures 

Figure S1 The pseudo code of intra-host mutation spectra computation. Here, 𝐷 

represents the dictionary which stores ′𝑞𝑢𝑎𝑙𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒𝑠′: 𝑏𝑎𝑠𝑒_𝑛𝑢𝑚𝑏𝑒𝑟𝑠  pairs at each site; 𝑉 

represents the base dataset after filtering by the algorithm at each site; 𝑄 represents the base 

quality score corresponding to 𝑙𝑒𝑓𝑡 or 𝑟𝑖𝑔ℎ𝑡; 𝑁 represents the base number corresponding to 

𝑄  or 𝑄  . and  𝑝 (𝑟 → 𝑚) represents the probability of base mutation type 𝑟 →



𝑚 at each site, 𝑛(𝑟 → 𝑚) represents the number of sites where base mutation type 𝑟 → 𝑚 

occurs. We implemented the algorithm separately for the positive and negative strand 

sequencing datasets to obtain the intra-host mutation spectra results for the positive- and 

negative-sense sub-genomes, respectively. 



Figure S2. The histogram of SARS-CoV-2 strand-specific mutations probability. Here, the 

height of each column represents the sum of corresponding number of positive- and negative-

sense strand base mutants in different base mutation types. The left column of the mutation 

types (the deep red colored) represents the positive-sense strand while the right (light red 

colored) represents the negative-sense strand, and the color on the top of each column represents 

the probability of each base mutation type occurs. 



Figure S3. Verifying the upper limit of the mutation using information entropy. As the steps of 

mutation simulation increase, the content of each base varies and eventually tends to be constant 

(Figure 5). The result of this process is the decrease of uncertainty on the whole sequence; thus, 

information entropy can be used to measure the uncertainty and determine the upper limit of 

the mutation (Section 3.2.2). Here, we find that the information entropy of the positive- and 

negative-sense strand converges to stationary distribution after about 80,000 steps. Therefore, 

we can greatly increase the efficiency of the SARS-CoV-2 intra-host mutation simulation by 

determining the upper limit of the mutation. 



Supplementary Tables

Table S1. Data sources that used in this paper 

Data Name Original Source Download Link 

SARS-CoV-2 nanopore 

sequencing data 
NCBI SRA 

https://github.com/FuboMa/DoctorProjects/t

ree/master/Project%20SARS-CoV-

2/Data%20directory 

Table S2. The group settings for the test of significance 

Group Number Setting 

1 
𝑄  at each site under unfiltered or nucleobase filtering 

algorithm with dynamic threshold 

2 
𝑄  at each site under fastp or nucleobase filtering algorithm 

with dynamic threshold 

3 
𝑄  at each site under seqtk or nucleobase filtering algorithm 

with dynamic threshold 

4 
𝑄  at each site under sickle or nucleobase filtering algorithm 

with dynamic threshold 

Table S3. Results of the normality test and the test of significance for four groups of SARS-

CoV-2 positive-sense strand. 

Positive-sense Strand 
Group 1 Group 2 Group 3 Group 4 

unfil. d. t. fastp d. t. seqtk d. t. sickle d. t.

p-value of S. W. test 0 0 0 0 0 0 0 0 

normalized? N N N N N N N N 

p-value of M. W. U test 0 0 0 0 

difference significant? Y Y Y Y 



Table S4. Results of the normality test and the test of significance for four groups of SARS-

CoV-2 negative-sense strand. 

Negative-sense Strand 
Group 1 Group 2 Group 3 Group 4 

unfil. d. t. fastp d. t. seqtk d. t. sickle d. t.

p-value of S. W. test 0 0 0 0 0 0 0 0 

normalized? N N N N N N N N 

p-value of M. W. U test 0 0 0 0 

difference significant? Y Y Y Y 

Table S5. Computed mutation probability of nucleobases in our previous research [7]. 

To 

Mutate from 
A U C G 

A - 0.137 0.102 0.761 

U 0.084 - 0.817 0.099 

C 0.034 0.959 - 0.007

G 0.278 0.673 0.049 -
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