
Table S1 BPA Reconstruction

Input: KEGG pathway with node list N and edge list E;

1: seeds = {};

2: Initialization cyclic graph G with nodes N and edges E;

3: Run Tarjan’s algorithm to detect all cyclegroups (C1,C2,··· ,Cn);

4: Remove all edges connecting nodes in the same cyclegroup;

5: for Ci in (C1,C2,··· ,Cn) do

6: Randomly number each node inside Ci from small to large;

7: Add an edge from each lower number node to each higher number node;

8: For each parent A of a member of the cycle group that is not itself in the
cyclegroup, add an edge from A to each member of the cyclegroup;

9: end for

Output: Reconstructed pathway directed acyclic graph.

Table S2 PROPS Reconstruction

Input: KEGG pathway with node list N and edge list E;

1: seeds = {};

2: Initialization empty graph G with nodes N from the input pathway;

3: while E ̸= ∅ do

4: Randomly select ei from E;

5: Add ei to the graph G;

6: if cyclic(G) then

7: Remove ei from the graph G;

8: end if

9: Remove ei from the edge list E;

10: end while

Output: Reconstructed pathway directed acyclic graph.

Table S3 Clipper Reconstruction

Input: KEGG pathway with node list N and edge list E, healthy RNA-seq data H; 1:

for ni in N do

2: Extract parent node set Np for ni according to the edge list;

3: Extract corresponding expression data from healthy samples (HNp and

Hni) for parent genes Np and children gene ni;

4: Fit linear regression model for healthy samples lm(Hni ∼ HNp);

5: for nj in Np do

6: Assign p-value pnj to the edge from nj to ni;

7: end for 8: end for

9: Sort the list of edges in ascending p-value order;

10: Initialization empty graph G with nodes N from the input pathway;

11: while E ̸= ∅ do

12: Add edge ei to the graph G in ascending p-value order;

13: if cyclic(G) then

14: Remove ei from the graph G;

15: end if

16: Remove ei from the edge list E;

17: end while

Output: Reconstructed pathway directed acyclic graph.

Table S4 BNrich Reconstruction

Input: KEGG pathway with node list N and edge list E, healthy and disease

RNA-seq data H and D;

Stage 1: Eliminate edges through biological approaches;

1: for ei in E do

2: if (

3: ei connects two nodes with same label;

4: ei originates from nucleus resulting in cycle formation;

5: ei is opposite of the signaling flux direction and would lead to cycle ;

6:) {

7: Remove ei from the edge list;

8: }

9: end for

Stage 2: Simplify structure by LASSO

10: for ni in N do

11: Extract parent node set Np for ni according to the edge list;

12: Extract corresponding expression data from healthy (HNp and Hni) and disease

(DNp and Dni) samples for parent genes Np and children gene ni;

13: Fit regression model for healthy and disease sample separately

LASSO(Hni ∼ HNp) and LASSO(Dni ∼ DNp);

14: for nj in Np do

15: if βnj = 0 in both models then

16: Remove the edge from nj to ni;

17: end if 18: end for 19: end for

Output: Simplified pathway directed acyclic graph.

Table S5 Ensemble Reconstruction

Input: KEGG pathway with node list N and edge list E;

1: seeds = {};

2: Initialization cyclic graph G with nodes N and edges E;

3: Run Tarjan’s algorithm to detect all strongly connected components (SCCs)

(SCC1,SCC2,··· ,SCCn);

4: for metric in (TrueSkill, Social Agony) do

5: for strategy in (Forward, Backward, Greedy) do

6: for SCCi in (SCC1,SCC2,··· ,SCCn) do

7: if metric == TrueSkill then 8:

For each edge (u,v):

9: if v has a higher skill level than u (expected) then

10: Update the skill level µ and σ of u by a small amount;

11: else

12: Update the skill level µ and σ of u to a large extent;

13: end if

14: The ranking score of node u is defined as µu − 3σu;

15: else if metric == Social Agony then

16: Update ranking scores of each node by minimizing the total agony:

17: A(G) = minr(P
(u,v)∈E max(r(u) − r(v) + 1,0))

18: end if

19: if strategy == Forward then

20: Select the node v which has the highest ranking score in SCCi;

21: Remove its all out edges in SCCi; 22:

else if strategy == Backward then

23: Select the node v which has the lowest ranking score in SCCi;

24: Remove its all in edges in SCCi;

25: else if strategy == Greedy then

26: Select the edge with the highest difference in ranking score

27: between the starting and ending nodes to remove;

28: end if 29: end for 30: end for 31: end for

32: For each edge (u,v), add the number of removals under the 6 conditions;

33: Remove edge in the order of highest to lowest voting scores until the graph
becomes acyclic;

Output: Reconstructed pathway directed acyclic graph.

