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Section S1: A Comparative Study on the Running Time of the two 

algorithms 

1.1 Methods 

Simulation data generation method 

In order to explore the efficiency of the exhaustive algorithm and the greedy 

algorithm for different number of candidate markers and families, we generated 

families (parent pairs) and candidate markers through simulation. Families were 

generated in the form of one-to-one correspondence between parents. The marker sets 

were constructed as SNP markers, the most common dimorphic markers in the genome, 

including the optimal SNP marker sets and some background markers. For the optimal 

SNP marker sets, it was required that: (1) the markers in the combination were 

homozygous in each parent (i.e., "a/a" or "b/b"); (2) according to the offspring's 

genotypes ("a/a", "a/b", "b/b"), each marker could divide each group of parent pairs 

evenly into 3 subgroups, and each parent pair could only appear in one subgroup. Based 

on the above two requirements, we generated each optimal marker iteratively until the 

genotypes of each parent pair were unique, which means that we generated ⌈𝑙𝑙𝑙𝑙𝑙𝑙3𝑝𝑝⌉ 

markers where p stands for the number of parent pairs. Through the optimal SNP marker 

sets generated, simulation of parents’ genotypes was performed according to Mendel's 

law of separation. For the background markers, the genotypes of dimorphic SNPs were 

randomly generated for each parent. Finally, a candidate marker set was generated by 

combining the optimal marker set and the background marker set. 

Comparative study of running time 



 

 

In a test, m (m=5, 7, 9, 11, 13, 15, 17) candidate markers were randomly selected 

to test the exhaustive algorithm and the greedy algorithm in a population of n (n=10, 

30, 50, 75, 100) parent pairs. The test was repeated 5 times at each point (m, n). A 

running would be terminated if the running time was longer than 5000s, and the 

algorithm was considered unable to obtain PMS under the test conditions if no less than 

3 out of the 5 repeated tests were not completed. 

In order to further test the PMS detection efficiency of the greedy algorithm with 

a large number of candidate markers, we adopted bigger m values (m=100, 1000, 2500, 

5000, 10000) to test the greedy algorithm. Thus, a total of 25 PMS screening 

experiments were performed in the above five populations, and each experiment was 

repeated 100 times. 

We also simulated the situation when PMS did not exist. The genotype was set to 

"a/a" for the first 50 parent pairs in the optimal sets, and "b/b" for the other half parent 

pairs, then some background markers were added to form the final non-solution set. 

1.2 Results 

In order to explore the time efficiencies of the two algorithms, we compared their 

running time for PMS screening through the dimorphism markers and candidate parent 

pairs generated by simulation. As shown in the results, when the number of candidate 

markers reached 19 and the number of parent pairs reached 10, it took an average of 

1271s using the exhaustive algorithm. On this basis, increasing the number of markers 

or the number of parent pairs resulted in a timeout (>5000s). Therefore, for ease of 

description, we only selected the results with candidate markers within 17 for display 

(Figure 1A in Supplementary Section). Although the exhaustive algorithm was slightly 

faster than the greedy algorithm for fewer markers, when the number of candidate 

markers increased to 17, the greedy algorithm began to show speed advantages. 

While the exhaustive algorithm was not suitable for a large number of candidate 

markers, the running time of the greedy algorithm was roughly linearly related to the 

number of markers and the number of families (Figure 1B-C in Supplementary Section). 

The largest test dataset contained 10000 markers and 100 families, and the average time 



 

 

consumed by the greedy algorithm was 4953.38s, and all simulations was completed 

within 5000s. 

In summary, for dimorphic SNP markers, when the number of candidate markers 

was less than 15, the exhaustive algorithm was better, but when the number of markers 

was large, the greedy algorithm was the best or even the only option. The simulations 

above were implemented with the following configurations: CPU: Intel(R) Xeon(R) 

CPU E7-4820 v2 @ 2.00GHz, RAM: 1.0 TB. 

As for the SSR marker, we did not test the efficiency as above, because it is a kind 

of codominant marker which is hard to simulate due to the high polymorphism. 

According to what we’ve tested elsewhere, when it came to 4000 candidate markers 

and 150 candidate families in a closed population, the average time exceeded 5000 s. 

Subsequently, we limit the number of markers (~10000) and families (~100) in our 

website. 

 



 

 

Figure S1: The running time of the exhaustive algorithm and the greedy algorithm under 

different number of candidate markers or parent pairs . A: The running time of the two algorithms 

when the number of candidate markers was small. B: The relationship between the marker number 

and the running time of the greedy algorithm for various family numbers. C: The relationship 

between the family number and the running time of the greedy algorithm for various marker 

numbers. 

 

 

 

 

Section S2: Application in a real case 

2.1 Methods 

In order to investigate the factors which impact parentage assignment efficacy of 

the PMSs screened by the greedy algorithm (greedy-PMSs), we chose the genotyping 

data of a SSR marker set and 4 SNP marker sets from the Mexican gray wolf [19] as 

the real data sets (see the Results section for details of each data set). Since the greedy 

algorithm screens markers based on the genotypes of all candidate parents, we only 

used the eighteen trios within which both the parents and children were genotyped, and 

no missing markers for all parents. These trios belonged to 6 pedigrees. Considering 

that a large number of SNP markers were missing in MGW_1399, the only offspring of 

a certain trio, this trio was excluded in analysis based on SNP markers. Thus, 18 trios 

were used for SSR-based analysis, while 17 trios were used for SNP-based analysis. 

Parentage assignment was performed using CERVUS 3.0 (Kalinowski et al., 2007) and 

COLONY 2.0 (Jones & Wang, 2010) respectively based on the genotypes of PMS in 

corresponding offspring. In order to counteract the impact of erroneous or missing 

genotypes of markers in the PMS, we increased the redundancy of the PMS. To do so, 



 

 

for SSR datasets, due to the high polymorphism, the first marker of a PMS was removed 

from the candidate marker set, and the second PMS was obtained, then the two PMS 

were merged to form the third PMS where the complement markers in the second PMS 

were served as redundant markers in case markers in the first one encountered genotype 

errors. For SNP datasets, since almost all markers were dimorphic, we excluded all 

markers in the first PMS for screening the second one where the markers in the second 

one were served as redundant markers. 

As for the software used for parentage analysis, CERVUS 3.0, Critical Delta, the 

parameter which evaluates the reliability of parentage assignment results, is difficult to 

obtain significant results in case that the number of markers is small (the number of 

markers obtained by greedy algorithm is 3~5), and the software was designed for 

random mating populations instead of specified families, which conflicts with this case. 

Therefore, in this study, two criteria were used for the screening of parentage 

assignment results: ① It must be an authentic parent pair; ② TRIO LOD should be 

the largest and positive. As a matter of fact, incorrect or missing genotyping is not 

uncommon, and parentage assignment tended to fail for offspring with genotypable 

markers less than a half of the total markers in a non-redundant PMS. As for the another 

software, COLONY 2.0, the following settings were utilized: ① Monogamy for males 

and females was specified according to the authentic parent pairs; ② As a closed 

population, probabilities that the father and mother of an offspring were included in 

candidates were both set as 1; ③  No known sibship was specified; ④  The 

“Fulllikelihood” method was specified according to (Jones & Wang, 2010); ⑤ For 

each offspring, the authentic parent pair with the highest probability was ticked as the 

final result. 

2.2 Results 

We used one SSR dataset and four SNP datasets from a real case [19] to test the 

accuracy of parentage assignment through the greedy-PMSs. For each dataset, we 

screened two greedy-PMSs, merged them to form the third PMS, and used these three 

PMSs for parentage assignment (Table 4). 



 

 

The two greedy-PMSs from the SSR markers included three markers (Locus 14, 

Locus 4, and Locus 16) and four markers (Locus 4, Locus 5, Locus 16, and Locus 18) 

respectively. When assigned using CERVUS, by only using the first greedy-PMS for 

parentage assignment, there were two samples failed to be traced back to their authentic 

parent pairs because of the incorrect genotypes on Locus 14 and Locus 4. Therefore, 

the parentage assignment accuracy of all 18 progenies was 88.89% (16/18). It is worth 

noting that Locus 4 was also present in the second greedy-PMS, but it did not lead to a 

failure because the other markers in the second greedy-PMS were sufficient for 

parentage assignment of it, so the accuracy of this PMS was 100%. With the second 

greedy-PMS served as redundant markers in case the first one encountered genotype 

errors, the accuracy of the third PMS also reached 100%. When it comes to COLONY, 

the accuracy turned 100% for all three PMSs, which implied a more accurate outcome 

of parentage assignment than CERVUS with SSR markers. 

For the four SNP datasets, we compared the parentage assignment for 17 progenies. 

From the perspective of CERVUS, when one marker in a PMS was incorrectly 

genotyped in a sample, the parentage assignment for that sample failed, and the success 

rate was 0. In contrast, in most cases, the success rates were not affected until nearly 

half of the markers in a PMS were not genotyped (i.e., genotype missing). The only 

exception was PMS 45-1, whose markers showed highly similar genotypes in two 

parent pairs differed only at a missing locus. CERVUS preferentially outputted the 

parent pair that contains more homozygotes (Jones et al. 2010), and unluckily, the other 

one was correct. The similar results were obtained using COLONY, suggesting that as 

a single PMS, genotype error showed a more significant negative impact on parentage 

assignment. As for the low-redundancy PMS pooled from two greedy-PMSs, the 

accuracy increased for almost all datasets using both tools, suggesting that modestly 

increasing the redundancy of a PMS can effectively eliminate the negative impact of 

missing genotypes and genotype errors. 

 



 

 

Section S3: Analysis of polymorphism and exclusion probability 

3.1 Methods 

The polymorphism information content (PIC, [22]) was adopted as the index to 

measure a single marker's polymorphism in a population, and it was calculated as 

follows: 
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where 𝑝𝑝𝑖𝑖   refers to the allele frequency of the marker's i-th genotype in the 

population. The higher the PIC, the higher the polymorphism of the marker in the 

population, which means a stronger efficacy for parentage assignment. 

Since the parent genotypes were known in this study, the exclusion probability (PE) 

of a single marker could be calculated according to the following formula [7]: 
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where 𝑝𝑝𝑖𝑖 refers to the allele frequency of the i-th genotype of the current marker. 

The greater the PE, the stronger the parentage assignment efficacy.  

To evaluate the effectiveness of a set of markers for parentage assignment, it is 

necessary to comprehensively consider the PEs of all markers to form a cumulative 

exclusion probability (CPE). For a PMS, 𝐶𝐶𝐶𝐶𝐶𝐶 = 1 −∏(1 − 𝑃𝑃𝑃𝑃𝑖𝑖), where 𝑃𝑃𝑃𝑃𝑖𝑖 is the 

PE value of the i-th mark in the PMS. 

 

Section S4: pseudo code for PMSeeker 

Algorithm S1 Exhaustive Algorithm for PMS selection 

Input: Parents’ genotype file, block/family/group INFO 

Output: Output file 

1: function Main(ParentGeno, Info, Marker) 

2:   Parameters: ParentGeno is the genotypes of all parents at all loci; 



 

 

         Info is the group information of all candidate parents, including either GENDER or FAMILY; 

         Marker is the list of currently tested markers 

3:   /*Output candidate Parent pairs*/ 

4:   if Info == Gender then                                         /*GENDER information is provided*/ 

5:       ParentPair ← all possible combinations between female and male 

6:   else                                                                    /*Family is provided*/ 

7:       ParentPair ← one row one combination 

8:   end if 

9:       /*Iteratively select a certain number of candidiate markers*/ 

10:  for I in [1, len(Marker)] do 

11:      for MS in all combinations of I markers do 

12:          for pp in ParentPair do 

13:              Gpp,MS ← �𝑮𝑮𝒊𝒊×𝒋𝒋,𝟏𝟏,  𝑮𝑮𝒊𝒊×𝒋𝒋,𝟐𝟐, 𝑮𝑮𝒊𝒊×𝒋𝒋,𝑰𝑰�       /*offspring genotypes of pp (i×j) at marker set MS*/ 

14:          end for 

15:          intersect ← False 

16:          for pp0 and pp1 in ParentPair do 

17:              if Gpp0,MS ∩ Gpp1,MS then           /*pp0 and pp1 share the same offspring genotypes*/ 

18:                 intersect ← True; break 

19:              end if 

20:          end for 

21:          if intersect == False then 

22:              output current marker set MS 

23:          end if 

24:      end for 

25:  end for 

26: end function 

 

Algorithm S2 Greedy Algorithm for PMS selection 

Input: Parents’ genotype file, block/family/group INFO 



 

 

Output: Output file 

1: function Main(ParentGeno, Info, Marker) 

2:   Parameters: ParentGeno is the genotypes of all parents at all loci; 

         Info is the group information of all candidate parents, including either GENDER or FAMILY; 

         Marker is the list of currently tested markers 

3:   if Info == Gender then                               /*GENDER information is provided*/ 

4:       ParentPair ← all possible combinations between female and male 

5:   else                                                          /*Family is provided*/ 

6:       ParentPair ← one row one combination 

7:   end if 

8:       root ← ParentPair                          /*set all candidate parent pairs as the root*/ 

9:       N1 ← root; l = 1                                   /*initialize for the first layer 1*/ 

10:  while any |Nl| ! = 1 do 

11:      /*select the LOCAL BEST marker for layer l*/ 

12:      for ∗m in Marker do 

13:          for i in Nl do 

14:              ∗Sl,i ← {Pa1Pb1, Pa2Pb2, ...}          /*∗Nl,i contains {Pa1Pb1, Pa2Pb2, ...}*/ 

15:              ∗Gl,i ← {Ga1×b2 ∪ Ga2×b2 ∪ ... } 

16:              for ∗Gl,i,x in ∗Gl,i do 

17:                  ∗Gl,i,x ← PPs in ∗Sl,i that generate Gl,i,x 

18:              end for 

19:           end for 

20:           ∗Nl+1 ← {∗Gl,1,∗ Gl,2, ...} 

21:           deduplicate ∗Nl+1 and tick out ∗Nl+1,i == 1 

22:           calculate PDI for ∗Nl+1 

23:       end for 

24:       Choose the MARKER with the minimum PDI as the LOCAL BEST marker 

25:       /*output the Nl+1*/ 

26:       Nl+1 ← LOCAL BEST marker’s ∗Nl+1 



 

 

27:       l ← l + 1 

28:   end while 

29: end function 
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