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Methods and Materials 

Animal model of alcoholic liver disease (ALD). Alcohol consumption in humans begins with the 

accumulation of fat in the liver (fatty liver). Continuous use or abuse of alcohol increases the risk 

of disease progression from fatty liver to fibrosis, cirrhosis, and eventually liver cancer or death. 

There are many different alcohol consumption patterns in humans, such as binge drinking, acute, 

or chronic alcohol consumption. Both the amount of alcohol consumption and the drinking pattern 

influence the pathological outcomes. 

 

The ALD animal model employed in our study consisted of Wister rats fed a standard Lieber-

DeCarli diet supplemented with 36% EtOH for 5-8 weeks. Thus, this ALD animal model mimics 

a chronic alcohol consumption pattern. This model leads to the development of fatty liver and 

moderate liver injury. Since the focus of our investigation is delineating the changes in hepatic 

metabolic network during the development of alcohol induced fatty liver, we chose to use this 

alcohol feeding animal model.  

 

Hepatocyte cell samples. The Wistar rats in this experiment were received from Charles River 

Labs. Approximately 6 replicates of 10x106 hepatocyte cells were harvested from healthy control 

rats (n=7) and rats dosed with ethanol (n=6). The cells were counted and then stored as pellets at -

80oC. The samples were randomized throughout the extraction, sample preparation and data 

collection protocols.  

 

Aqueous metabolites extraction. The cells were thawed and then washed by adding 1 mL of 

Nanopure water to each cell pellet followed by pipet mixing. The cells were then centrifuged at 
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5000 g  for 10 minutes at 4oC. The cell wash was discarded. A quality control (QC) sample was 

prepared before metabolite extraction. 20 µL was removed from each hepatocyte cell biological 

replicate sample and combined to produce the single QC sample. The same extraction procedure 

was applied to both the QC and hepatocyte cell samples.  Cells were resuspended in 1 mL of 80% 

methanol and submitted to mechanical lysis with zirconia beads in a FastPrep® homogenizer (15 s 

at 1200 rpm followed by 30 s in an ice bath, the cycle was repeated three times). The lysed sample 

was then centrifuged at 20,000 g for 20 minutes at 4oC. The supernatant was collected and 1 mL 

of 50% methanol in Nanopure water was added to each cell pellet and vortexed for 10 seconds. 

The sample was centrifuged, the supernatant was collected and combined with the first extract. 

The sample was split 90:10 to prepare both an NMR and mass spectrometry (MS) sample, 

respectively. Each sample was transferred to a centrifugal evaporator and then lyophilized to 

dryness. In this regard, an NMR and MS sample was both prepared from each individual 

hepatocyte cell sample. 

 

Organic lipid extraction. Upon completion of the aqueous extraction, 4 mL of a 2:1:1 

chloroform:methanol:water mixture was added to each cell pellet in a glass vial. The pellet was  

vortexed for 30 seconds and then centrifuged at 20,000 g for 20 minutes at 4oC. The organic layer 

was collected, and the process was repeated two additional times. The three organic extracts were 

combined and then dried with a rotary evaporator. The organic extraction was only used to prepare 

a MS sample. 

   

Preparation of NMR aqueous metabolome samples. After lyophilization, each dried NMR 

aqueous sample was resuspended in 0.3 mL of a 50 mM potassium phosphate buffer at pH 7.2 
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(uncorrected) in “100%” D2O containing 50 μM TMSP-D4 as a chemical shift reference. The 

sample was transferred to a 3 mm NMR tube for data collection. 

 

Preparation of liquid-chromatography-mass spectrometry (LC-MS) aqueous metabolome 

samples. After lyophilization, each dried MS aqueous extract was resuspended in 100 uL of 

Nanopure water containing 0.1% of formic acid.  

 

Preparation of LC-MS organic metabolome samples. Each dried MS organic extract was 

resuspended in 100 uL of isopropanol containing 0.1% formic acid.  

 

One-dimensional (1D) 1H NMR data acquisition. 1D 1H NMR spectra were collected on a 

Bruker Avance III-HD 700 MHz spectrometer equipped with a quadruple resonance QCI-P 

cryoprobe (1H, 13C, 15N, 31P) with z-axis gradients. A Bruker SampleJet sample changer with 

IconNMR and an auto tune and match (ATM) system were used to automate the NMR data 

collection. The 1D 1H NMR spectra were collected at 298K with 32K data points, a spectral width 

of 11 ppm, 64 scans and 4 dummy scans. The spectra were collected using excitation sculpting to 

remove the solvent and maintain a flat baseline.[1]  

 

LC-MS metabolomics data acquisition. LC-MS Metabolomics was performed on a Waters 

Acquity UPLC system coupled to a Xevo G2-XS Q-TOF (Waters MS Technologies, Manchester, 

UK) equipped with an electrospray ionization (ESI) source operating in positive ionization mode. 

Two mobile phases were prepared, mobile phase A consisted of 0.1% formic acid in water and 

mobile phase B was 0.1% formic acid in acetonitrile. The metabolites were separated with a Waters 
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high strength silica (HSS-T3, 1.0 mm × 50 mm, 1.8 µm) column with a 31-minute linear gradient 

from 0.1% to 85% B. Column and autosampler temperature were set to 40°C and 5°C, respectively. 

The flow rate was set to 95 μL/min. The ionization source condition was set as follows: capillary 

voltage of 3.2 kV, sampling cone voltage of 40 V and source offset of 80 V. The source 

temperature was set to 120°C and the desolvation temperature was set to 500°C. The cone and 

desolvation gas flows were set to 50 and 800 L/h, respectively. Data acquisition was in MSE mode, 

which simultaneously records exact mass precursor and fragment ion information. MSE was 

performed with a low collision energy of 4 eV and the high collision energy ramped from 15 to 50 

eV. The data was collected using an m/z range of 50 to1,200 with a scan time of 0.05 seconds.  The 

data were acquired using an independent reference lock mass via the LockSpray interface to ensure 

accuracy and reproducibility during the MS analysis. Leucine Enkephalin was used as the 

reference compound ([M+H]+ = 556.2771). 

 

LC-MS lipidomics data acquisition. LC-MS Lipidomics was performed on a Waters Acquity 

UPLC system coupled to a Xevo G2-XS Q-TOF (Waters MS Technologies, Manchester, UK) 

equipped with an ESI source operating in either positive or negative ionization mode. Two mobile 

phases A  was composed of acetonitrile/water (60:40, v/v) mixture containing ammonium formate 

(10 mM, pH 6.2) and formic acid (0.1%). Mobile phase B was composed of an 

isopropanol/acetonitrile mixture ( 90:10, v/v) containing ammonium formate (10 mM, pH 6.2) and 

formic acid (0.1%). The lipids were separated with a Waters C18 column Charged Surface Hybrid 

(CSH, 1.0 × 50 mm, 1.7 μm) column with a 20-minute gradient in 90% mobile phase B. Column 

and autosampler temperature were set to 40°C and 5°C, respectively. The flow rate was set to 50 

μL/min. The ionization source condition was set as follows: capillary voltage of 3.2 kV, sampling 
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cone voltage of 40 V and source offset of 80 V. The source temperature was set to 120°C and the 

desolvation temperature was set to 500°C. The cone and desolvation gas flows were set to 50 and 

800 L/h, respectively. Tandem mass spectrometry in data independent acquisition mode was 

performed with a low collision energy of 4 eV and the high collision energy was ramped from 15 

to 50 eV. The data was collected using an m/z range of 50 to1,200 with a scan time of 0.05 seconds.  

The data were acquired using an independent reference lock mass via the LockSpray interface to 

ensure accuracy and reproducibility during the MS analysis. Leucine Enkephalin was used as the 

reference compound ([M+H]+ = 556.2771). Splash® Lipidomics ® Mass Spectrometry Standard 

(Avanti polar lipids, Inc.) was used as quality-control standard before collecting the experimental 

lipidomics samples. 

 

NMR data processing. The 1D 1H NMR spectra were processed with our MVAPACK 

metabolomics toolkit (http://bionmr.unl.edu/mvapack.php)[2] to generate a data matrix and 

perform multivariate and univariate statistical analysis. The spectra were processed with a 1.0 Hz 

exponential apodization function, a single round of zero-filling, and a Fourier transformation. 

Spectra was referenced and aligned to TMSP-D4.[2] Solvent signals and noise regions were 

excluded, and the spectra were either aligned using the Icoshift peak alignment algorithm or binned 

using an adaptive intelligent binning algorithm. The 1D 1H NMR data matrix was pareto scaled 

and normalized with the median in order to generate a normal gaussian distribution using 

MetaboAnalyst 5.0.[3] The principal component analysis orthogonal projection to latent structures 

discriminant analysis (OPLS-DA) models were generated using MVAPACK.[2] The OPLS-DA 

models was validated using permutation testing with n = 1000, to yield associated R2 , Q2, and  p-

http://bionmr.unl.edu/mvapack.php
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values. Statistically significant features were selected using the generated data matrix from the 

OPLS-DA model.  

 

NMR metabolite identification.  Discriminatory features were identified and quantified using 

Chenomx NMR Suite 8.3 (Chenomx, Edmonton, Canada). The Chenomx-Processor module was 

first used to baseline and phase correct the 1D 1H NMR spectra. The NMR spectra were then 

assigned and the corresponding areas under the curve (AUC) were calculated by computer assisted 

manual batch fitting. The AUC and metabolite assignments were exported to an Excel file. 

Student’s t-test was used to measure pair-wise statistical significance (p-value < 0.05), which was 

then corrected for a false-discover rate (FDR) with the Benjamini-Hochberg multiple hypothesis 

correction. The AUC fold changes were calculated by comparing the average AUC of the ethanol 

treatment group to the average AUC of the control groups.  

  

LC-MS metabolomics data peak picking. The LC-MS datasets were imported to Progenesis® 

QI metabolomics software (version 2.4, Nonlinear Dynamics, Newcastle, UK). The 

chromatographic alignment, peak picking, and data normalization (with normalization to all 

features) were performed in an automatic manner with quality control (QC) runs as references. 

Features were automatically deconvoluted for isotopes and adducts, and then associated with a 

retention time and a m/z value. For positive ionization mode, adducts were assigned to either  

[M+H]+, [M+Na]+, [M+NH4]+, [M+2H]+, [M-H+2Na]+, [M–H2O+H]+, [M+H-2H2O]+,  or 

[M+K]+. Features were selected based on coefficients of variation (CVs) relative to QC samples 

where features with CVs over 30% were eliminated. 
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LC-MS lipidomics data peak picking. The LC-MS datasets were imported to Progenesis® QI 

metabolomics software (version 2.4, Nonlinear Dynamics, Newcastle, UK). The chromatographic 

alignment, peak picking, and data normalization (with normalization to all features) were 

performed in an automatic manner with quality control (QC) runs as references. Features were 

automatically deconvoluted for isotopes and adducts, and then associated with a retention time and 

a m/z value. For positive ionization mode, adducts were assigned to either as [M+H] +, [M+Na]+, 

[M+NH4]+, [M+2H]+, [M+H+Na]2+, [M–H2O+H]+, or [M+K]+. Features were selected based on 

coefficients of variation (CVs) relative to QC samples where features with CVs over 30% were 

eliminated. 

 

Data preprocessing and post-processing. A feature was considered present if it was measured in 

at least 50% of the samples. Features deemed absent were omitted while signal imputation was 

performed on the remaining features using the k-nearest neighbor (KNN) method.[4] All features 

underwent a log2 transformation. LC-MS metabolic features were normalized using cubic 

splines.[5] LC-MS lipid and metabolic features were normalized using probabilistic quotient 

normalization (PQN).[6] Signal drift was corrected using a quality control-based machine learning 

algorithm: random forest signal correction (QC-RFSC).[7] All preprocessing was performed using 

NOREVA 2.0 online service.[8] 

 

Combined dataset post-processing. The post-processed data matrices were concatenated into a 

single matrix using only those samples found across all three data types. Furthermore, the 

combined matrix was scaled using the auto-scaling method in MetaboAnalyst 5.0 to derive a 
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normalized Gaussian curve.  The multivariate and univariate statistical analysis was performed 

using MetaboAnalyst 5.0.25  

 

LC-MS statistical analysis. The multivariate and univariate statistical analysis was performed 

using MetaboAnalyst 5.0.25 PCA and OPLS-DA models were calculated after pareto scaling for 

outlier detection and comparative analysis between groups. The loading plots and S-plots were 

generated from the OPLS-DA model and were employed to visualize the relative importance of 

the differential variables and to acquire a list of peak indices. Metabolites were considered 

differential when presenting a minimum fold change ≥ 1.5 and/or ANOVA p-value ≤ 0.05. The 

qualified filtered variables were further submitted to identification. 

 

Metabolite and lipid identification from the MS dataset. The features and corresponding peak 

area for the metabolite were subjected to percent standard deviation calculation (30% < percent 

standard deviation), Student’s t-test (p-value < 0.05) with multiple hypothesis correction 

(Benjamini-Hochberg), and fold change calculation. The differential features were identified using 

the Progenesis QI metabolomics software by searching m/z values and retention times against 

reference entries in the Human Metabolome Database using accurate mass measurements, 5 ppm 

mass error.[9,10] The fragmentation information was also used to increase the confidence in lipid 

and metabolite identification, as was stated in the paper by Crook and Chatterjee et al.[11,12] 

 

Metabolite Pathway and Network analysis. After univariate statistical analysis and compound 

identification, the statistically significant features from both the LC-MS and NMR datasets were 

subjected to network analysis using MetaboAnalyst 5.0.[3,13] Significantly perturbed metabolite 
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pathways were identified using the Pathway Analysis module in MetaboAnalyst 5.0 by selecting 

all the metabolite names identified by NMR and MS metabolomics data analysis. 

 

Proteomics Extraction. 50 µg of protein per sample was obtained from each of the five biological 

replicates per group. Detergent was removed by a chloroform/methanol extraction. The protein 

pellet was then re-suspended in 100 mM ammonium bicarbonate and digested overnight at 37°C 

with MS-grade trypsin (Pierce).  Sample reduction occurred with 10 mM DTT at 56°C for 30 mins 

and alkylation was accomplished using 50 mM iodoacetamide at RT for 25 mins. Peptides were 

cleaned with PepClean C18 spin columns (Thermo) and were re-suspended in 2% acetonitrile 

(ACN) and 0.1% formic acid (FA).  

 

Proteomics LC-MS data acquisition. 500 ng of each sample was loaded onto trap column 

Acclaim PepMap 100 75 µm x 2 cm C18 LC Columns (Thermo Scientific™) at flow rate of 4 

µl/min then separated with a Thermo RSLC Ultimate 3000 (Thermo Scientific™) on a Thermo 

Easy-Spray PepMap RSLC C18 75 µm x 50 cm C-8 2 µm column (Thermo Scientific™) with a 

step gradient of 4–25% solvent B (0.1% FA in 80 % ACN) from 10-100 min and 25–45% solvent 

B for 100–130 min at 300 nL/min and 50oC with a 155 min total run time. Eluted peptides were 

analyzed by a Thermo Orbitrap Fusion Lumos Tribrid (Thermo Scientific™) mass spectrometer 

in a data dependent acquisition mode.  A survey full scan MS (from m/z 350–1800) was acquired 

in the Orbitrap with a resolution of 120,000. The AGC target for MS1 was set as 4 × 105 and ion 

filling time set as 100 ms. The most intense ions with charge state 2-6 were isolated in 3 s cycle 

and fragmented using HCD fragmentation with 35% normalized collision energy and detected at 

a mass resolution of 30,000 at 200 m/z. The AGC target for MS/MS was set to 5 × 104, ion filling 
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time was set to 60 ms, and  dynamic exclusion was set for 30 s with a 10 ppm mass window. Each 

sample was run in duplicate.  

 

Protein Identification and Statistics. Protein identification was performed by searching MS/MS 

data against the Swiss-Prot rat protein database downloaded on July 2020 using the in house 

PEAKS X + DB search engine. The search was set up for full tryptic peptides with a maximum of 

two missed cleavage sites. Acetylation of protein N-terminus and oxidized methionine were 

included as variable modifications and carbamidomethylation of cysteine was set as fixed 

modification. The precursor mass tolerance threshold was set to 10 ppm and a maximum fragment 

mass error was set to 0.02 Da. The significance threshold of the ion score was calculated based on 

a false discovery rate of ≤ 1%. Quantitative data analysis was performed using progenesis QI 

proteomics 4.2 (Nonlinear Dynamics). Statistical analysis was performed using ANOVA and The 

Benjamini-Hochberg method was used to adjust p-values for multiple-testing  false discovery rate. 

An FDR adjusted p-value ≤ 0.05 was considered as significant.  

 

Protein Network Analysis.  A network analysis of differentially expressed proteins was 

performed using Cytoscape v 3.9.0 with the ClueGo v 2.5.8 plugin.[14,15]   

 

Quantitative Real Time-Polymerase Chain Reaction measurement of Ugt-1a1. Total RNA 

was isolated from hepatocytes cells using the NucleoSpinRNA kit (Macherey Nagel, Düren, 

Germany) according to the manufacturer’s recommendations. Total RNA concentration was 

quantified using a NanoDrop spectrophotometer and stored at −80oC until further use. 500 ng of 

the extracted RNA was reverse transcribed using PrimeScript RT Master Mix (Takara, Saint-
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Germain-en-Laye, France) according to the manufacturer’s recommendations. The transcribed 

cDNA was then used to determine the regulation of Ugt-1a1 in the hepatocytes by qPCR using 

SYBR Premix Ex Taq II (Takara).  Ugt-1a1 primers were selected based on the primer sequences 

reported by Kutsukake et al.[16] For the reaction, 25 ng of cDNA was used as a template and added 

to 1 × SYBR Premix Ex Taq II together with each respective primer pair at a final concentration 

of 0.6 µM. The qRT-PCR cycling protocol was set to 45 cycles (10 s at 94oC, 10 s at 60oC, and 10 

s at 72oC), followed by a melting curve analysis. Transcript levels were calculated by relative 

quantification using the GapDH as an internal reference and the normalized abundances were 

plotted. The qRT-PCR was carried out with the Light Cycler R480 (Roche, Basel, Switzerland). 
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Figure S1. Bar plot of the number of PubMed papers published in the last seven years that used 

metabolomics, lipidomics, and proteomics to investigate alcoholic liver disease.  
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Figure S2. A distribution of feature intensities from the combined omics dataset before (left) and 

after (right) the data was normalized and scaled. The resulting bell-shaped curve demonstrates the 

good quality of the normalization scheme and the corresponding reliability of the combined omics 

dataset.  
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Figure S3. Bar plots of A) the relative amounts of Ugt-1A1 mRNA (p-value < 0.05, F.C. 1.8 higher 

in control) and B) UGT enzymatic activity detected from hepatocytes cells isolated from control 

and EtOH-fed rat livers    
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Figure S4. Boxplot of the relative amounts of the Cpt1A protein detected in hepatocytes cells 

isolated from control and EtOH-fed rat livers (p-value < 0.01, F.C. 3.3 times higher in ethanol). 
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Table S1. Summary of quality and validation metrics for the PCA and OPLS-DA models. 

Omics dataset PCA1 Validation 
metrics2 OPLS-DA3 Validation 

metric2 p-value4 

Metabolomics 
NMR 

R2 0.507 R2 0.970 0.009 

Q2 0.451 Q2 0.945 0.006 

Metabolomics 
MS  

R2 0.791 R2 0.996 0.003 

Q2 0.775 Q2 0.994 0.003 

Lipidomics 
MS 

R2 0.875 R2 0.997 0.001 

Q2 0.857 Q2 0.995 0.001 

Combined  
NMR-MS 

Metabolomics-
Lipidomics 

R2 0.755 R2 0.996 0.001 

Q2 0.734 Q2 0.994 0.001 

1Principal component analysis 
2R2 provides a measure of model fit to the original data, and Q2 provides a measure of internal consistency 
between the original and model predicted data. 
3Orthogonal projection to latent structures  
4p-values from a cross-permutation analysis with n=1000  
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Table S2. Summary of the top-enriched metabolites from the LC-MS and NMR datasets. 

Metabolite class Metabolite name VIP1 p-value2 FDR 
p-value3 F.C.4 Average 

Control5 
Average 
Ethanol5 

MWW 
p-value6 

Glucuronides Dehydroisoandrosterone-
glucuronide 1.08 3.77x10-42 4.87x10-41 0.04 3324.2 132.9 6.69x10-14 

Estriol-glucuronide 0.89 7.35x10-17 7.72x10-17 2.04 225.8 459.6 3.07x10-16 
Dehydrotestosterone 

glucuronide 0.91 5.88x10-18 6.50x10-18 0.25 430.4 107.9 2.70x10-12 

Hydroxy-octadec-enoate-
glucuronide 1.02 2.03x10-29 4.05x10-29 0.15 248.2 36.6 7.67x10-14 

Hydroxyandrosterone-
glucuronide 0.98 6.78x10-22 8.63x10-22 0.19 604.7 116.16 3.56x10-17 

alpha-CEHC glucuronide 0.78 3.88x10-12 3.88x10-12 2.67 633.7 1691.7 3.82x10-15 
Benzoyl glucuronide 

(Benzoic acid) 1.09 4.81x10-42 4.87x10-41 58.62 4347.7 254848.3 2.51x10-22 

Cholestane-tetrol-
glucuronide 0.93 4.02x10-20 4.97x10-20 0.29 1115.5 320.3 2.40x10-22 

Cholic acid glucuronide 0.97 6.37x10-23 8.63x10-23 2.66 442.1 1174.1 8.00x10-22 
Phenethylamine 

glucuronide 1.07 3.74x10-39 1.74x10-38 0.05 212.9 10.2 5.69x10-14 

Tyramine glucuronide 1.08 1.04x10-41 7.27x10-41 43.41 2.2 96.1 1.82x10-14 
Amino acids Sarcosine 0.93 3.57x10-8 4.91x10-8 2.67 0.5 1.4 9.80x10-06 

Betaine 1.48 1.94x10-62 3.21x10-61 3.26 1.9 6.2 5.25x10-12 
Glycine 1.29 4.18x10-20 1.53x10-19 4.66 1.2 5.6 7.15x10-10 
Alanine 1.47 2.77x10-47 3.05x10-46 3.38 6.5 22.0 5.23x10-12 
Lysine 0.98 1.68x10-9 2.77x10-9 2.41 5.5 13.2 1.34x10-07 
Valine 1.31 6.63x10-23 3.13x10-22 2.07 5.9 12.2 5.17x10-12 

Leukotrienes Oxo-dihydroxy-
leukotriene B4 1.09 1.36x10-41 8.15x10-41 8.89 42.2 375.2 2.31x10-22 

COOH-leukotriene E4 0.8 3.32x10-13 3.41x10-13 2.76 302.3 835.7 8.00x10-12 
Dihydroxyleukotriene B4 1.08 1.34x10-36 4.68x10-36 0.33 1463.7 488.3 5.14x10-14 

Leukotriene E4 0.98 7.08x10-23 9.30x10-23 0.41 436.7 177.7 8.00x10-22 
Monosaccharides Ribose 1.07 2.85x10-11 5.23x10-11 0.33 0.9 0.3 7.98x10-08 

Xylose 0.97 4.76x10-9 7.14x10-9 2.1 7.5 15.7 1.15x10-08 
Xylulose 0.77 7.05x10-6 8.31x10-6 2.16 5.1 11.0 1.81x10-4 

Cholines Choline 0.88 2.28x10-7 3.01x10-7 3.09 1.1 3.3 1.24x10 -5 
Phosphorylcholine 0.35 6.97x10-2 6.97x10-2 2.08 9.7 20.2 9x10-2 

Monoacylglycerophosp
hoethanolamines 

LysoPE(16:0) 1.01 1.04x10-28 1.82x10-28 5.66 36.5 206.8 9.11x10-14 
LysoPE(20:5) 0.94 5.88x10-20 7.05x10-20 0.42 734.1 307.0 8.76x10-18 
LysoPE(22:4) 1.07 5.80x10-42 4.87x10-41 0.06 792.0 47.4 5.61x10-14 

C18 steroids Oxoestrone 1.05 6.55x10-34 1.62x10-33 3.61 35.9 129.7 5.73x10-14 
Hydroxyestrone 0.98 6.19x10-24 9.62x10-24 0.2 327.9 66.2 5.72x10-14 

Hydroxyestradiol 1.04 4.09x10-33 9.53x10-33 0.14 220.4 30.1 5.73x10-14 
TCA acids Citric acid 1.19 1.65x10-15 3.89x10-15 6.33 0.3 1.9 4.18x10-11 

Succinic acid 1.37 6.04x10-27 3.32x10-26 2.75 0.4 1.1 5.14x10-12 
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Dicarboxylic acids Galactaric acid 1.23 4.59x10-17 1.17x10-16 3.29 0.7 2.3 8.87x10-11 
Succinic acid 1.37 6.04x10-27 3.32x10-26 2.68 0.4 1.07 5.14x10-12 

Undecanedioic acid 0.38 3.12x10-2 3.22x10-2 1.23 3.0 3.7 4.12x10-02 
Fatty acyl glycosides Octanol glucoside 0.96 2.71x10-23 3.92x10-23 3.02 144.4 436.9 8.00x10-22 

Hexanol 
arabinosylglucoside 0.96 2.28x10-23 3.41x10-23 0.27 226.6 61.2 3.12x10-13 

Hydroxy Fatty Acids Hydroxyisovaleric acid 0.98 2.10x10-9 3.29x10-9 3.75 0.4 1.5 1.58x10-6 
Hydroxymethylglutaric 

acid 1.03 2.23x10-10 3.87x10-10 3.63 0.8 2.9 5.56x10-7 

Glycolic acid 0.42 2.64x10-2 2.81x10-2 1.59 1.7 2.7 3.12x10 -2 
1VIP score - variable importance in projection score from OPLS-DA model 
2p-value - Student’s t-test p-value 
3FDR p-value – FDR corrected p-value using the Benjamini-Hochberg method  
4F.C. - fold change calculated using the average of integrated peak area from EtOH-feed samples divided by the average of the integrated 

peak area from control samples. 
5Average feature intensity from the control or EtOH-feed samples 
6Mann–Whitney U test or Wilcoxon Rank Sum Test p-value  
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Table S3. Summary of the top-enriched lipids from the LC-MS dataset.  
Lipid class Lipid name VIP1 p-value2 FDR 

p-value3 F.C.4 Average 
Control5 

Average 
Ethanol5 

MWW 
p-value6 

Diacylglycerols DG(32:3) 1.1 3.55x10-28 7.96x10-28 5.08 34.0 172.4 4.57x10-14 
DG(34:3) 0.81 3.57x10-12 4.20x10-12 0.47 2242.5 1061.9 1.70x10-17 
DG(36:3) 0.11 3.64x10-1 3.64x10-1 0.04 31367.7 1210.2 1.70x10-17 
DG(39:4) 1.01 9.88x10-22 1.37x10-21 0.3 831.8 252.5 4.65x10-19 
DG(42:1) 1.11 8.44x10-35 6.61x10-34 7.75 470.8 3650.7 1.11x10-13 
DG(42:2) 1.02 2.09x10-24 3.65x10-24 5.03 257.2 1294.6 7.93x10-13 

Thia Fatty Acids Mercapto-octadecanoic 
acid 1.13 7.43x10-46 3.49x10-44 11.22 38.6 433.5 4.87x10-14 

Diacylaminosugars UDP-hydroxymyristoyl-
GlcNAc 1.03 1.84x10-23 3.09x10-23 0.15 1404.7 215.2 1.70x10-17 

Diacylglycosylglycerop
hospholipids 

PC(17:0,20:4) 1.06 2.89x10-23 4.69x10-23 2.78 1239.6 3447.7 2.06x10-21 

Other Eicosanoids HEDE 1.06 5.58x10-25 1.01x10-24 2.84 360.0 1021.9 1.71x10-22 
Triacylglycerols and 

triradylcyglycerol 
TG(58:1) 1.01 2.84x10-19 3.71x10-19 6.24 5228.3 32606.9 1.77x10-22 

TG(60:0) 1.12 1.02x10-32 4.35x10-

32 8.77 1129.0 9900.5 1.91 x10-22 

TG(50:0) 1.14 8.18x10-39 1.28x10-37 13.09 101.9 1334.1 4.57 x10-14 

TG(59:2) 1.12 3.92x10-33 2.05x10-32 5.45 3081.8 16786.0 5.14 x10-21 

TG(61:2) 1.14 1.29x10-43 3.02x10-42 12.19 375.6 4577.0 5.08x10-14 

TG(60:4) 1.08 1.77x10-31 6.39x10-31 4.34 889.1 3859.1 1.71x10-22 

TG(61:5) 1.09 7.02x10-29 1.94x10-28 4.8 444.8 2136.1 1.71x10-22 

TG(61:3) 1.12 1.50x10-38 1.76x10-37 5.56 615.4 3422.5 5.09x10-14 

TG(62:1) 1.09 3.82x10-34 2.57x10-33 8.66 119.7 1036.0 6.07x10-14 

TG(64:3) 1.13 1.64x10-36 1.54x10-35 10.31 1197.9 12351.3 5.09x10-14 

TG(66:4) 1.07 1.43x10-27 3.05x10-27 5.53 259.0 1432.4 4.94x10-14 

TG(68:5) 1.1 3.19x10-28 7.88x10-28 3.4 1210.4 4111.6 8.78x10-14 
Hydroxysphinganines 

and sphinghanine 
Cer(44:1) 0.65 1.50x10-6 1.60x10-6 0.31 72501.2 22501.1 2.52x10-17 

Cer(44:0(OH)) 0.5 4.12x10-4 4.30x10-4 0.37 3109.2 1136.8 8.53x10-13 
Phosphoserines and 

derivatives 
PS(39:0) 0.95 1.15x10-19 1.54x10-19 0.31 798.2 250.5 2.99x10-12 
PS(44:3) 1.07 9.41x10-33 4.35x10-32 0.08 654.7 51.4 3.57x10-13 

PS(O(42:4) 1.08 4.36x10-30 1.46x10-29 0.09 1111.8 99.2 4.24x10-13 
Ceramide 

phosphoethanolamines 
PE-Cer(34:1) 1.07 1.25x10-28 3.27x10-28 0.11 421.4 44.8 2.43x10-13 

PE-Cer(40:1(-OH)) 0.99 5.99x10-22 8.80x10-22 0.35 2651.2 922.4 1.70x10-17 
Carbocyclic Fatty 

Acids 
Phenyl heneicosanoic 

acid 0.77 3.52x10-10 3.93x10-10 0.49 1752.8 860.4 1.87x10-12 

phosphoethanolamines PE-NMe(32:0) 0.81 9.59x10-12 1.10x10-11 0.45 8898.2 3968.4 4.78x10-13 
PE-NMe2(34:3) 1.07 3.53x10-28 7.96x10-28 0.12 3825.7 469.4 3.95x10-18 

PE(P-36:3) 1.1 1.02x10-29 3.19x10-29 3.64 137.7 501.7 9.48x10-14 
Stigmasterols Glc-Stigmasterol 0.98 1.93x10-18 2.45x10-18 2.24 880.2 1968.8 9.88x10-19 

Prostaglandins PGF2alpha methyl ether 1.04 6.80x10-22 9.68x10-22 3.07 2552.0 7841.6 1.15x10-20 
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Cholesterol and 
derivatives 

Hydroxy -methyl-
cholestene carboxylic 

acid 
0.84 4.34x10-15 5.37x10-15 2.18 925.5 2016.9 3.11x10-16 

Cholestane-tetrol 0.22 1.78x10-1 1.82x10-1 0.45 1253.2 567.6 2.04x10-6 
Phosphocholine PC(37:4) 

  
1.06 2.89x10-23 4.69x10-23 2.78 1239.6 3447.7 2.06x10-21 

Unsaturated fatty acids tricosenoic acid 1.01 1.56x10-22 2.45x10-22 0.17 1940.9 338.3 1.71x10-22 
1VIP score - variable importance in projection score from OPLS-DA model 
2p-value - Student’s t-test p-value 
3FDR p-value – FDR corrected p-value using the Benjamini-Hochberg method  
4F.C. - fold change calculated using the average of integrated peak area from EtOH-feed samples divided by the average of the 
integrated peak area from control samples. 
5Average feature intensity from the control or EtOH-feed samples  

        6Mann–Whitney U test or Wilcoxon Rank Sum Test p-value  
 

 Table S4. Enriched pathway analysis of proteomics dataset using 
KEGG. 

Pathway name Gene p-value1              FDR 
 p-value3 

F.C.3 

Oxidative phosphorylation LOC100911
483; 

4.47x10-2 4.77x10-2 -2.81 

Cox6c2; 1.00x10-3 1.34x10-2 -2.6 

Ndufv2 1.08x10-3 1.34x10-2 -4.76 

Atp5f1d 4.21x10-3 1.91x10-2 -22.63 

Cox4i1 2.49x10-3 1.73x10-2 -3.09 

Cox5b 2.50x10-3 1.73x10-2 -5.16 

Ndufb10 3.70x10-3 1.88x10-2 -7.17 

Cox7a2l 4.35x10-3 1.91x10-2 -11.5 

Cox5a 4.44x10-3 1.91x10-2 -3.6 

Ndufa6 6.60x10-3 2.28x10-2 -3.88 

Ndufa10 7.80x10-3 2.41x10-2 -2.67 

Ndufs1 8.90x10-3 2.54x10-2 -3.3 

Ndufa2 1.37x10-2 2.92x10-2 -8.32 

Ndufs3 1.62x10-2 3.13x10-2 -2.01 

Ndufv3 1.76x10-2 3.27x10-2 -1.94 

Ndufs2 3.16x10-2 4.16x10-2 -2.62 
    

Metabolic pathways Nt5e 2.12x10-5 3.91x10-3 -4.46 

LOC100362
216 

4.47x10-2 4.77x10-2 -2.81 

Fah 4.05x10-4 9.54x10-3 -1.77 

Tm7sf2 4.15x10-4 9.54x10-3 3.51 

Rgn 4.99x10-4 1.08x10-2 -4.46 

Cyp2b1 7.02x10-4 1.21x10-2 6.98 

Cox6c2 1.00x10-3 1.34x10-2 -2.6 

Ndufv2 1.08x10-3 1.34x10-2 -4.76 
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Atp5po 3.79x10-2 4.52x10-2 -3.22 

Sord 2.27x10-3 1.73x10-2 -2.56 

Cox4i1 2.49x10-3 1.73x10-2 -3.09 

Cox5b 2.50x10-3 1.73x10-2 -5.16 

Khk 2.65x10-3 1.74x10-2 -7.18 

Uroc1 3.23x10-3 1.88x10-2 -5.39 

Cyp2c13 3.67x10-3 1.88x10-2 -3.8 

Ndufb10 3.70x10-3 1.88x10-2 -7.17 

Cox5a 4.44x10-3 1.91x10-2 -3.6 

Enpp3 4.50x10-3 1.91x10-2 -2.11 

Plpp3 4.76x10-3 1.95x10-2 -3.24 

Ugt2b1 4.77x10-3 1.95x10-2 2.99 

Rdh2 5.50x10-3 2.09x10-2 -2.37 

Pc 5.62x10-3 2.09x10-2 -2.12 

Sqle 5.83x10-3 2.14x10-2 2.96 

Ndufa6 6.60x10-3 2.28x10-2 -3.88 

Ndufa10 7.80x10-3 2.41x10-2 -2.67 

Ndufs1 8.90x10-3 2.54x10-2 -3.3 

Eno1 9.33x10-3 2.54x10-2 -3.43 

Eno3 1.31x10-2 2.83x10-2 2.8 

Ndufa2 1.37x10-2 2.92x10-2 -8.32 

Cyp3a2 1.43x10-2 3.00x10-2 -4.03 

Aco2 1.55x10-2 3.12x10-2 -2.93 

Ndufs3 1.62x10-2 3.13x10-2 -2.01 

Cyp4a10 1.66x10-2 3.13x10-2 2.2 

Nsdhl 1.66x10-2 3.13x10-2 2.29 

Ndufv3 1.76x10-2 3.27x10-2 -1.94 

Comt 2.05x10-2 3.47x10-2 -4.3 

Dhcr7 2.38x10-2 3.67x10-2 2.22 

Uox 2.96x10-2 4.09x10-2 -2.22 

Tpi1 2.98x10-2 4.09x10-2 -4.61 

Cycs 3.06x10-2 4.09x10-2 -3.63 

Ndufs2 3.16x10-2 4.16x10-2 -2.62 

Ugt2b10 3.58x10-2 4.46x10-2 1.85 

Cyp2c23 3.72x10-2 4.52x10-2 -1.61 

Csad 3.79x10-2 4.52x10-2 -2.42 

Atp5po 3.79x10-2 4.52x10-2 -3.22 

Maob 4.04x10-2 4.56x10-2 -2.63 

Pcyt1a 4.05x10-2 4.56x10-2 -2.9 



S-24 
 

Chdh 4.15x10-2 4.58x10-2 -2.45 

Baat 5.00x10-2 5.50x10-2 -2.56 

Steroid hormone biosynthesis Cyp2b1 7.02x10-4 1.21x10-2 6.98 

Cyp2c13 3.67x10-3 1.88x10-2 -3.8 

Ugt2b1 4.77x10-3 1.95x10-2 2.99 

Sts 8.01x10-3 2.41x10-2 1.92 

Cyp3a2 1.43x10-2 3.00x10-2 -4.03 

Comt 2.05x10-2 3.47x10-2 -4.3 

Ugt2b10 3.58x10-2 4.46x10-2 1.85 

Cyp2c23 3.72x10-2 4.52x10-2 -1.61 

Steroid biosynthesis Tm7sf2 4.15x10-4 9.54x10-3 3.51 

Sqle 5.83x10-3 2.14x10-2 2.96 

Nsdhl 1.66x10-2 3.13x10-2 2.29 

Dhcr7 2.38x10-2 3.67x10-2 2.22 

Carbon metabolism Rgn 4.99x10-4 1.08x10-2 -4.46 

Esd 3.41x10-3 1.88x10-2 3.45 

Pc 5.62x10-3 2.09x10-2 -2.12 

Eno1 9.33x10-3 2.54x10-2 -3.43 

Eno3 1.31x10-2 2.83x10-2 2.8 

Aco2 1.55x10-2 3.12x10-2 -2.93 

Tpi1 2.98x10-2 4.09x10-2 -4.61 

Drug metabolism - 
cytochrome P450 

Ugt2b1 4.77x10-3 1.95x10-2 2.99 

Fmo1 1.84x10-2 3.33x10-2 -3.95 

Gsta3 3.35x10-2 4.30x10-2 -2.12 

Ugt2b10 3.58x10-2 4.46x10-2 1.85 

Maob 4.04x10-2 4.56x10-2 -2.63 

Ascorbate and aldarate 
metabolism 

Rgn 4.99x10-4 1.08x10-2 -4.46 

Ugt2b1 4.77x10-3 1.95x10-2 2.99 

Ugt2b10 3.58x10-2 4.46x10-2 1.85 

Biosynthesis of amino acids Gpc4 1.14x10-2 2.71x10-2 -2.52 

Eno1 9.33x10-3 2.54x10-2 -3.43 

Eno3 1.31x10-2 2.83x10-2 2.8 

Aco2 1.55x10-2 3.12x10-2 -2.93 

Tpi1 2.98x10-2 4.09x10-2 -4.61 

Taurine and hypotaurine 
metabolism 

Csad 3.79x10-2 4.52x10-2 -2.42 

Baat 5.00x10-2 5.50x10-2 -2.56 

Starch and sucrose 
metabolism 

Enpp3 4.50x10-3 1.91x10-2 -2.11 

Ugt2b1 4.77x10-3 1.95x10-2 2.99 

Ugt2b10 3.58x10-2 4.46x10-2 1.85 
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Pentose and glucuronate 
interconversions 

Sord 2.27x10-3 1.73x10-2 -2.56 

Ugt2b1 4.77x10-3 1.95x10-2 2.99 

Ugt2b10 3.58x10-2 4.46x10-2 1.85 

Fructose and mannose 
metabolism 

Sord 2.27x10-3 1.73x10-2 -2.56 

Khk 2.65x10-3 1.74x10-2 -7.18 

Tpi1 2.98x10-2 4.09x10-2 -4.61 

Tyrosine metabolism Fah 4.05x10-4 9.54x10-3 -1.77 

Comt 2.05x10-2 3.47x10-2 -4.3 

Maob 4.04x10-2 4.56x10-2 -2.63 

Linoleic acid metabolism Cyp2c13 3.67x10-3 1.88x10-2 -3.8 

Cyp3a2 1.43x10-2 3.00x10-2 -4.03 

Cyp2c23 3.72x10-2 4.52x10-2 -1.61 

Arachidonic acid metabolism Cyp2b1 7.02x10-4 1.21x10-2 6.98 

Cyp2c13 3.67x10-3 1.88x10-2 -3.8 

Cyp4a10 1.66x10-2 3.13x10-2 2.2 

Cyp2c23 3.72x10-2 4.52x10-2 -1.61 

Histidine metabolism Uroc1 3.23x10-3 1.88x10-2 -5.39 

Maob 4.04x10-2 4.56x10-2 -2.63 

Glycolysis / Gluconeogenesis Eno1 9.33x10-3 2.54x10-2 -3.43 

Eno3 1.31x10-2 2.83x10-2 2.8 

Tpi1 2.98x10-2 4.09x10-2 -4.61 
1p-value - Student’s t-test p-value 
2FDR p-value – FDR corrected p-value using the Benjamini-Hochberg method  
3F.C. - fold change calculated using the average of integrated peak area from EtOH-feed samples divided by the average of the 
integrated peak area from control samples. 
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Table S5. Enriched pathway analysis of proteomics dataset using WikiPathways.  

Pathway name Wikipathway 
ID Gene p-value1              FDR 

p-value3 F.C.3 

Electron transport 
chain 

WP59 Atp5po 3.79x10-2 4.52x10-2 -3.22 
Ndufa6 6.60x10-3 2.28x10-2 -3.88 

Ndufs3 1.62x10-2 3.13x10-2 -2.01 
Cox6c2 1.00x10-3 1.34x10-2 -2.6 

Ndufs1 8.90x10-3 2.54x10-2 -3.3 
Ndufv2 1.08x10-3 1.34x10-2 -4.76 

Ndufb10 3.70x10-3 1.88x10-2 -7.17 
Atp1a2 4.64x10-2 4.83x10-2 -2.57 

Ndufa10 7.80x10-3 2.41x10-2 -2.67 
Ndufa2 1.37x10-2 2.92x10-2 -8.32 

Cox4i1 2.49x10-3 1.73x10-2 -3.09 
Cox5a 4.44x10-3 1.91x10-2 -3.6 

Atp5f1d 4.21x10-3 1.91x10-2 -22.63 
Mtnd4 2.22x10-2 3.60x10-2 -4.77 

Ndufs2 3.16x10-2 4.16x10-2 -2.62 
Cox7a2l 4.35x10-3 1.91x10-2 -11.5 

Oxidative 
phosphorylation 

WP1283 Atp5po 3.79x10-2 4.52x10-2 -3.22 
Ndufa6 6.60x10-3 2.28x10-2 -3.88 

Ndufs3 1.62x10-2 3.13x10-2 -2.01 
Ndufs1 8.90x10-3 2.54x10-2 -3.3 

Ndufv2 1.08x10-3 1.34x10-2 -4.76 
Ndufb10 3.70x10-3 1.88x10-2 -7.17 

Atp5f1d 4.21x10-3 1.91x10-2 -22.63 
Ndufa10 7.80x10-3 2.41x10-2 -2.67 

Ndufa2 1.37x10-2 2.92x10-2 -8.32 
Atp5mf 1.35x10-3 1.46x10-2 -1.83 
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Mtnd4 2.22x10-2 3.60x10-2 -4.77 
Ndufs2 3.16x10-2 4.16x10-2 -2.62 

Glucuronidation WP1276 Ugt2b1 4.77x10-3 1.95x10-2 2.99 
Ugt2b10 3.58x10-2 4.46x10-2 1.85 

Ugdh 3.02x10-2 4.09x10-2 -2.59 
Ugp2 2.15x10-3 1.69x10-2 -2.54 

Nuclear receptors 
in lipid 

metabolism and 
toxicity 

WP139 Cyp2e1 2.78x10-6 1.02x10-3 8.95 
Cyp2c11 1.17x10-2 2.71x10-2 -3.75 

Abcb4 3.03x10-2 4.09x10-2 -2.55 
Abcb11 1.90x10-2 3.37x10-2 -2.12 

Abcc2 6.13x10-4 1.13x10-2 -4.51 
Hexoses 

metabolism in 
proximal tubules 

WP3916 Eno3 1.31x10-2 2.83x10-2 2.8 

Pdhb 3.73x10-3 1.88x10-2 -2.39 
Sord 2.27x10-3 1.73x10-2 -2.56 

Eno1 9.33x10-3 2.54x10-2 -3.43 
Pc 5.62x10-3 2.09x10-2 -2.12 

Khk 2.65x10-3 1.74x10-2 -7.18 
Cholesterol 
metabolism 

WP632 Sqle 5.83x10-3 2.14x10-2 2.96 

Nsdhl 1.66x10-2 3.13x10-2 2.29 
Dhcr7 2.38x10-2 3.67x10-2 2.22 

Scarb1 3.69x10-2 4.52x10-2 -2.94 
1p-value - Student’s t-test p-value 
2FDR p-value – FDR corrected p-value using the Benjamini-Hochberg method  
3F.C. - fold change calculated using the average of integrated peak area from EtOH-feed samples divided by the average of the 
integrated peak area from control samples. 

  



S-28 
 

References 

 
1. Simpson, A.J.; Brown, S.A. Purge NMR: effective and easy solvent suppression. J Magn 

Reson 2005, 175, 340-346, doi:10.1016/j.jmr.2005.05.008. 

2. Worley, B.; Powers, R. MVAPACK: a complete data handling package for NMR 

metabolomics. ACS Chem Biol 2014, 9, 1138-1144, doi:10.1021/cb4008937. 

3. Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, 

C.; Jacques, P.E.; Li, S.; Xia, J. MetaboAnalyst 5.0: narrowing the gap between raw 

spectra and functional insights. Nucleic Acids Res 2021, 49, W388-W396, 

doi:10.1093/nar/gkab382. 

4. Geva, S.; Sitte, J. Adaptive nearest neighbor pattern classification. IEEE Trans Neural 

Netw 1991, 2, 318-322, doi:10.1109/72.80344. 

5. Perperoglou, A.; Sauerbrei, W.; Abrahamowicz, M.; Schmid, M. A review of spline 

function procedures in R. BMC Med Res Methodol 2019, 19, 46, doi:10.1186/s12874-

019-0666-3. 

6. Emwas, A.H.; Saccenti, E.; Gao, X.; McKay, R.T.; Dos Santos, V.; Roy, R.; Wishart, 

D.S. Recommended strategies for spectral processing and post-processing of 1D (1)H-

NMR data of biofluids with a particular focus on urine. Metabolomics 2018, 14, 31, 

doi:10.1007/s11306-018-1321-4. 

7. Luan, H.; Ji, F.; Chen, Y.; Cai, Z. statTarget: A streamlined tool for signal drift correction 

and interpretations of quantitative mass spectrometry-based omics data. Anal Chim Acta 

2018, 1036, 66-72, doi:10.1016/j.aca.2018.08.002. 



S-29 
 

8. Yang, Q.; Wang, Y.; Zhang, Y.; Li, F.; Xia, W.; Zhou, Y.; Qiu, Y.; Li, H.; Zhu, F. 

NOREVA: enhanced normalization and evaluation of time-course and multi-class 

metabolomic data. Nucleic Acids Res 2020, 48, W436-W448, doi:10.1093/nar/gkaa258. 

9. Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vazquez-Fresno, R.; 

Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: the human metabolome 

database for 2018. Nucleic Acids Res 2018, 46, D608-D617, doi:10.1093/nar/gkx1089. 

10. Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, 

K.; Arndt, D.; Sawhney, S.; et al. HMDB: the Human Metabolome Database. Nucleic 

Acids Res 2007, 35, D521-526, doi:10.1093/nar/gkl923. 

11. Crook, A.; De Lima Leite, A.; Payne, T.; Bhinderwala, F.; Woods, J.; Singh, V.K.; 

Powers, R. Radiation exposure induces cross-species temporal metabolic changes that are 

mitigated in mice by amifostine. Sci Rep 2021, 11, 14004, doi:10.1038/s41598-021-

93401-7. 

12. Chatterjee, A.; Sakallioglu, I.T.; Murthy, D.; Kosmacek, E.A.; Singh, P.K.; McDonald, 

J.T.; Powers, R.; Oberley-Deegan, R.E. MnTE-2-PyP protects fibroblast mitochondria 

from hyperglycemia and radiation exposure. Redox Biol 2022, 52, 102301, 

doi:10.1016/j.redox.2022.102301. 

13. Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0--making 

metabolomics more meaningful. Nucleic Acids Res 2015, 43, W251-257, 

doi:10.1093/nar/gkv380. 

14. Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; 

Fridman, W.H.; Pages, F.; Trajanoski, Z.; Galon, J. ClueGO: a Cytoscape plug-in to 



S-30 
 

decipher functionally grouped gene ontology and pathway annotation networks. 

Bioinformatics 2009, 25, 1091-1093, doi:10.1093/bioinformatics/btp101. 

15. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; 

Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of 

biomolecular interaction networks. Genome research 2003, 13, 2498-2504, 

doi:10.1101/gr.1239303. 

16. Kutsukake, T.; Furukawa, Y.; Ondo, K.; Gotoh, S.; Fukami, T.; Nakajima, M. 

Quantitative Analysis of UDP-Glucuronosyltransferase Ugt1a and Ugt2b mRNA 

Expression in the Rat Liver and Small Intestine: Sex and Strain Differences. Drug Metab 

Dispos 2019, 47, 38-44, doi:10.1124/dmd.118.083287. 

 


	Isin Tuna Sakallioglu,1 Bridget Tripp2, Jacy Kubik,3,4 Carol A. Casey,3,4 Paul Thomes,3,4* and Robert Powers1,5*

