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Table S1: Average AE grades for drugs acting on DHODH. Please refer to the 

DHODH worksheet in the SupplementaryFile2.xlsx file. 

Table S2: Average AE grades for drugs acting on HMGCR. Please refer to the 

HMGCR worksheet in the SupplementaryFile2.xlsx file. 

Table S3: The log2 fold changes of metabolite-flows for the template, identified 

anticancer target genes, and identified antimetabolites. Please refer to the 

MetaboliteFlowChange worksheet in the SupplementaryFile3.xlsx file. 
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Figure S1: The mathematical formulation of the outer optimization problem in IACT 

framework 
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The fuzzy minimization, min , means that the growth rate of cancerous and mutant 

cells achieves to zero as possible. By contrast fuzzy maximization, max , indicates 

that ATP production rate of the perturbed cells would be as large the upper bound as 

possible. The fuzzy dissimilarity, dissimilarity , is a generalized objective function 

that is different from traditional optimization problems. It is applied for evaluating 

how a disparity between the fold changes of metabolite-flow or flux-sum for the 

perturbed cells and the cancer template. A significant disparity (low membership 

grade) means the flux changes of the perturbed cells are considerable unlike to the 
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template. This situation implies that the determined target has low metabolic deviation 

to the normal cells leading to tumorigenesis due to treatment of cancer cells. Fuzzy 

objectives can be attributed to membership functions in order to convert them into 

decision criteria so that a fuzzy optimization problem becomes a maximizing decision 

problem. 

 

Fuzzy objectives in Eq.(S1-1) can be attributed to membership functions in order to 

convert them into decision criteria so that a fuzzy optimization problem becomes a 

maximizing decision problem (Hsu and Wang, 2013; Zimmermann, 2010; Massad, et. 

al., 2008). The transformation of each objective in the outer optimization problem 

(S1-1) describes as follows: 

 

• The first fuzzy objective is applied to measure lethality of cancer cells for 

treatment and the second fuzzy objective is to measure cell growth of normal cells 

due to perturbation for treatment. It indicates that we would like to determine 

anticancer targets that the influence of cell growth for the perturbed cells is as 

small as possible.  
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Fuzzy minimizing the cell growth of the perturbed cell to zero as possible:

min 0
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The fuzzy minimizing objectives can elicit a one-side membership function to convert 

into a decision criterion. A linear membership function is a simplest formulation 

(Figure S2-1), and expressed as follows: 
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where the lower and upper bounds,  and LB UB

biomass biomassv v , are provided by the user. 
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Figure S1-1. A one-side linear membership function for evaluating a fuzzy 

minimizing objective. 

 

• The third objective is applied to measure cell viability for perturbed cells. It 

indicates that we would like to find anticancer targets that the ATP production rate 

of the perturbed can be as close to the normal level as possible. 
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The fuzzy maximizing objective is also applied a one-side membership function 

(Figure S1-2) to convert into a decision criterion as follows: 

 

0,                  if 

,  if 

1,                   if 

PB LB

ATP ATP

PB LB
PB LB PB UBATP ATP
ATP ATP ATP ATPUB LB

ATP ATP

PB UB

ATP ATP

v v

v v
v v v

v v

v v



 


−
=  

−
 

       (S1-5) 

 

 



 6 

( )PB PB

ATP ATPv

0

1
M

em
b

er
sh

ip
 f

u
n

ct
io

n

LB

ATPv UB

ATPv

PB

ATPv

 

Figure S1-2. A one-side linear membership function for evaluating a fuzzy 

maximizing objective. The lower and upper bounds,  and LB UB

ATP ATPv v  are provided by a 

user. 

 

The first goal in the IACT problem is to consider the cell mortality of the treated cells, 

i.e. TR

CV . The second goal in the IACT problem involves cell growth and ATP 

production for the perturbed cells. A mean or minimizing value of two membership 

grades are generally used to measure cell viability. In this study, both evaluations 

(referred to as mean-min) are combined to compute the second goal by 

 

( )  ( )2 min , 2PB PB PB PB PB

CV biomass ATP biomass ATP    = + +     (S1-6) 

 

A numerical example shown in Table S1-1 is to illustrates a merit of the mean-min 

evaluation that it can discriminate cases having the identical mean. 

 

  



 7 

Table S1-1. A numerical example to illustrate a mean, min and mean-min evaluation. 

Mean_min can discriminate the cases having the identical means. 

Case PB

biomass  
PB

ATP  ( ) 2PB PB

biomass ATP +   min ,PB PB

biomass ATP   PB

CV  

1 1 0 0.5 0 0.25 

2 0.5 0.5 0.5 0.5 0.5 

3 0.4 0.6 0.5 0.4 0.45 

 

• The fourth objectives are to minimize the similarity ratios of fluxes and 

metabolite-flows to the templates built from cancer and normal models.  
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The similarity ratios of change trends for fluxes and metabolite-flows are applied to 

account how many trends of perturbed fluxes/metabolite-flows compared with the 

normal ones are consistent with the change trends of cancer cells. A perturbed cell 

gets higher similarity ratios that imply it is more similar distribution pattern to the 

cancer counterpart. As a result, the perturbed cells would like to lead to tumorigenesis. 

In contrast, minimizing similarity ratios can prevent tumorigenesis in the IACT 

problem. For computational purpose, such similarity ratios are replaced by 

maximizing decision criterion as 

 

/ /1 = −
F MS S F MS             (S1-8) 

 

The detailed computation of similarity ratio discussed in Wang, et.al. (2020), briefly 

expresses as follows: 

At first, the log2 fold changes of each flux (Lf/b) and each metabolite-flow (LM,m) at 

perturbed (denoted as PB) and normal (BL) states, and their templates, / , and T T

f b M mL L , 

at cancer and normal states are respectively computed as follows: 
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where a is the set of discovered anticancer targets, the metabolite-flow or overall 

synthesis rates (rm) of the mth metabolite in perturbed, cancer and basal states are 

respectively computed as follows:  
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Here c is the set of metabolites involved in different compartments of the cells, and 

m is the set of metabolites. The expression enclosed in brackets indicates the 

synthesis rate of the ith metabolite that summed the influxes of the forward reactions 

and backward reactions. The similarity ratios ( FS  and MS ) of fluxes and 

metabolite-flows for the side effect are calculated as follows: 
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where the similarity indicators (
/ /f b m

i ) for each forward and backward reaction, and 

mth metabolite are defined as 
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The tolerances for increase or decrease are defined as tol+ = log2(1 + ) and tol- = 

log2(1 - ), respectively, and  is the percentage of flux alteration. The similarity 

indicator represents whether the trend of flux fold change for the template and the 

perturbed cell is consistent or not. Totally, the similarity ratio is the mean for all 

trends of both models. 

 

• The fifth objectives are applied to measure dissimilarity of fluxes and 

metabolite-flows for perturbed cell compared to the cancer template, and 

similarity of fluxes and metabolite-flows for perturbed cell compared to the 

normal template, respectively. 
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Two-side membership functions are used to represent the fuzzy dissimilarity (Figure 

S1-3) and fuzzy similarity objectives (Figure S1-4), respectively. 
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Figure S1-2. A two-side linear membership function for evaluating a fuzzy 

dissimilarity objective. CALB, CAST, and CAUB are, respectively, the lower bound, 

standard value, and upper bound for fluxes or metabolite flows of cancer templates. 
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Figure S1-2. A two-side linear membership function for evaluating a fuzzy similarity 

objective. BLLB, BLST, and BLUB are, respectively, the lower bound, standard value, 

and upper bound for fluxes or metabolite flows of normal templates. 
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Based on fuzzy set theory, fuzzy dissimilarity is a complement of fuzzy similarity. 

Here, fuzzy similarity for each perturbation is expressed as follows: 
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where the bounds can be provided from clinical experimental data if available. 

However, up-to-now, genome-scale clinical fluxes are not available. The flux 

templates computed from the cancer and normal models are provided to estimate the 

bounds by 

Lower bounds of each membership function:
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Thus, the membership grade for each metabolic deviation of the perturbed cell is 

respectively evaluated by  

  / max min , ,1 ,0L R

v M  =          (S1-21) 

Based on the complement fuzzy similarity, the membership grade for fuzzy 

dissimilarity is computed by / /1
F M F ML L L L = − . 

The decision criterions of fuzzy dissimilarity and fuzzy similarity for all fluxes and 

metabolite-flows in GSMN are summed up all two-side membership functions, and 

respectively expressed as follows: 
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• Each objective in the IACT problem is attributed to a membership function. Each 

membership grade is between zero and one. The value of zero implies that the 

objective is completely unsatisfied. In contrast, the objective fulfils so that the 

membership grade achieves one. Using the intersection of the membership 

functions, the multi-objectives can formulate as maximization of a hierarchical 

fitness, D, as 

 ( )min , 2D CV CV DV   = +          (S1-26) 

where the first priority grade (CV) in the hierarchical fitness considered the 

membership grades for the cell growth rates of the cancer and perturbed cells, and 

computed by the mean-min evaluation for both cells as follows 

( )  ( )2 min , 2CA PB CA PB

CV CV CV CV CV    = + +        (S1-27)  

It accounts for the membership grade, CA

CV , for the cell growth of cancer cells (the 

first goal) and cell viability grade, PB

CV , of perturbed cells (second goal in Eq.(S1-6)). 

The second priority grade, DV, in the hierarchical fitness is to evaluate metabolic 

deviation of perturbed cells (third goal and fourth goal) by the mean-min evaluation 

as 

 

 (S1-28) 

The hierarchical fitness implies that the first priority grade is more priority than the 

second one (A numerical example in Table S1-2), and is applied as a fitness 

evaluation in the NHDE algorithm for determining the next better individuals. 

 

Table S1-2. A numerical example to illustrate the hierarchical decision fitness 

Case 1 2 min{1, 2} D 

1 1 0 0 0.5 

2 0.6 0.4 0.4 0.5 

3 0.4 0.6 0.4 0.4 

 

  

( )  ( )6 min , , , , , 2
F M F M F M F MDV S S L L v M S S L L v M            = + + + + + +
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Figure S2: The restrictions on the bounds of the inner optimization problem. 

The IACT framework is not only to discover modulated reactions based on 

gene-centric approach, but also suits for metabolite-centric and reaction-centric 

approaches. The approach depends on the constraint on the lower and upper bounds of 

modulated reactions in the inner optimization problems. For gene-centric approach, 

the lower and upper bounds of modulated reactions for gene-centric approach are 

constrained as following: 
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where IZ is the set of reactions regulated by isozymes determined using the GPR 

associations, and modulation parameter, , is determined by the NHDE algorithm. 

The metabolite-centric regulators are considered towards modulating the synthesis 

reactions flowing to the active metabolites. The lower and upper bounds of modulated 

reactions for the ith active metabolite are restricted as 
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where Nij is the stoichiometric coefficient for the ith metabolite and jth reaction, rxn is 

the set of overall reactions in the metabolic model, rev is the set of reversible 

reactions.  
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Figure S3: Introduction to the Nested Hybrid Differential Evolution (NHDE) 

algorithm. 

The multi-objectives in the outer optimization can be converted as a maximization 

problem of a hierarchical decision-making fitness, D. The inner optimization 

problems consist of FBA problems for treatment and perturbation are linear 

programming (LP) and UFD problems are quadratic programming (QP). The IACT 

platform can be rewritten as the following generalized formulation for easily 

explaining the NHDE algorithm.   

 

Outer optimization problem:

max ( )

subject to the inner optimization problems: 

(1) LP and QP problems for treating cancer cells.

(2) LP and QP problems for perturbing normal cells  

Df 




=








x, z
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The NHDE algorithm is a stochastic optimization based on hybrid differential 

evolution (HDE), which was extended from the original DE algorithm (Storn and 

Price, 1996; Storn and Price, 1997). The basic operations of original DE and NHDE 

are shown in Tab. S1-1. The detailed procedures have discussed by Wang (2017).  

Table S3-1. Basic operations for the original DE and NHDE algorithms 

Original DE NHDE 

1. Representation and 

 initialization 

2. Mutation 

3. Crossover operation 

4. Selection and evaluation 

5. Repeat steps 2 to 4 

1. Representation and initialization 

2. Mutation with rounding operation 

3. Crossover operation 

4. Restriction operation 

5. Selection and evaluation 

6. Solve LP/QP problems for each candidate 

7. Compute fitness for each feasible design 

8. Migration operation performed naturally or 

enforced if necessary 

9. Repeat steps 2 to 6 

 

The NHDE algorithm is a parallel direct search procedure as shown in Table S1-2 that 

is a modified version from Wang (2017; 2020) to suit for solving the IACT problem. 

NHDE utilizes a population of Np individuals (enzymes, metabolites and reactions) to 
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find an optimal solution. The initialization process randomly generates Np individuals 

zi with corresponding modulation actions to cover the entire search space uniformly. 

Each population consists of a set of enzymes, metabolites, or reactions that depend on 

modulation using gene-centric, metabolite-centric or reaction-centric approach.   

 

Table S3-2. The NHDE algorithm for iteratively selecting a set of candidates towards 

discovering anticancer targets 

NHDE 

1. Representation and initialization 

pi Ni ,...,1),,(uniformInt)( maxmin0 == zzz  

Each individual is generated by an integer random number between zmin and 

zmax with uniform distribution 

2. Mutation with rounding operation 

 ˆ( ) INT ( ) ( ) ( ) ( ) ( )G G G G G G G

i p j k l m  = + − + − z z z z z z  
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4. Restriction operation 

min max

min max min max

, [ , ]
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G G

ji ji j jG
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j j ji j j

z z z z
z

z z z z z

 
= 



 

5. Selection and evaluation 

(a) For each candidate, solve the LP/QP problems for treatment of cancer 

cells, respectively. 

(b) Compute penalty if the above problems are infeasible; otherwise, 

executes the next step.  

(c) For each optimal solution from Step (a), solve LP/QP problems for 

perturbation of normal cells, respectively. 

(d) Compute penalty if the above problems are infeasible, and then 

performs the next step.  

(e) Compute fitness for each feasible solution 

( , ) penaltyfitness f= +x z  

6. Migration operation performed naturally or enforced if necessary 

]1,0[ if ),,(uniformInt)( maxmin == zzz i

G
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7. Repeat steps 2 to 6 
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