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A U-Net-like architecture [12] was used for the lesion detection (Figure S1). The neu-

ral network has performed well on lesion detection in PET datasets. The down-sampling 
path contains four residual learning blocks [19]. In the up-sampling path, there are four 
residual learning blocks and two transposed convolutional layers [20] to aggregate con-
textual information [21]. 

The model was optimized with a Combo loss, which is a linear combination of binary 
cross-entropy loss and Dice loss [22]. 
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where  𝑦𝑦𝑛𝑛 ∈ 𝑦𝑦 is the ith value of the gold-standard label 𝑦𝑦 and 𝑦𝑦�𝑛𝑛 ∈ 𝑦𝑦� is the ith value of 
the corresponding prediction 𝑦𝑦�. 

Implementation Details 
We empirically set 𝛼𝛼 = 6, 𝜔𝜔 = 5, 𝛿𝛿 = 1. We optimize the lesion detection network 

using stochastic gradient descent with Nesterov momentum: learning rate = 0.0005, mo-
mentum = 0.99, batch size = 8, and total iterations = 105. 

Additionally, a data augmentation module was used to help train the model. The 
module consists of random shifting, random flipping, and random rotation.  
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Figure S1. Model Training for Lesion Detection—Network architecture. 
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