
1. Graphhical representatioon of the code for the automatomatic construction of GEMs

Supplemen

tary figure

1: Figure

representin

g the

different

steps

described

in the

protocol to

construct

genome-

scale

models of

human

metabolism

together

with the

developed

algorihtms

to build,

curate, test

and refine

the

constructed

GEM

2. Pseudo

Code for

“Building

model”

process

A.

Improve

metabolite

annotation

in the

refernce

model

A.1

Gather

metabolites

info from a

`model`, filtering out from `identifiers`.

met_list = empty list

for each met in model.metabolites do the following:

 create a tuple met_tuple with elements met.name, met.formula, met.annotation, met.id[:-1]

 if met_tuple is not in met_list then:

 add met_tuple to met_list

A.2 Identify metabolite annotations .

 unnanotated = []

 annotated = []

 met_annotation = {}

 # Loop through each metabolite in the metabolite list

 for name, formula, annotation, iden in met_list:

 # Identify the metabolite

 result = identify_metabolite(name, formula, iden)

 met = [name, formula, annotation, iden] #Identify metabolite annotation in different databases

database

 # If the metabolite could not be identified, add it to the list of unannotated metabolites

 if result is None:

 unnanotated.append(met)

 # Otherwise, write the result to output file and add metabolite to the annotated metabolites list

 else:

 met_annotation[met.id] = met #Save the resulting metabolite annotation dictionary in

“met_annotation” variable

 annotated.append(met)

B. Improve reaction annotation in the refernce model

B.1 Gather reactions info from a `model`, filtering out from `identifiers`.

result = {}

Find all reactions in the input model.

for n, reaction in enumerate(model.reactions):

 result[reaction id] = result + [identify_reaction(reaction, n)]

B.2 Execute JI on metabolic reactions

met_annotation = {}

for id1, l, r, a, rev in zip(reaction id 1, substrates and products and their stoichiometries in reaction 1):

 for id2, l2, r2, b in zip(reaction id 2, substrates and products and their stoichiometries in reaction 2):

 a, b = str(a), str(b)

 # for reactions “a+b → c+d” and “e+f → g+h”, compare the groups [a,b],[e,f] and [c,d],[g,h]

 Jllrr = jaccard(l.split(','), l2.split(',')) + jaccard(r.split(','), r2.split(','))

 if rev == True: # if reaction is reversible

 # for reactions a+b → c+d and e+f → g+h, compare the groups [a,b],[g,h] and [c,d],[e,f]

 Jlrrl = jaccard(l.split(','), r2.split(',')) + jaccard(r.split(','), l2.split(','))

 else:

 Jlrrl = 0

 if Jllrr == 2.0 or Jlrrl == 2.0:

 met_annotation[id1] = [attributes in reaction 1, a,l,r,b,l2,r2,2.0] #Save the resulting reaction

annotation dictionary in “met_annotation” variable

 break

C. Improve model annotation

annotate_cobra_model(output_cobra_model_filen_name, met_annotation, reac_annotation)

D. mass balance reactions, inprove genes and S-GPR/GPR annotation and isoenzyme-based model

expansion

model = read_sbml_model('models/output_cobra_model_filen_name.xml') # Read in the model from

an SBML file

with model: # Loop over reactions in a model

 for reac_count, x2 in enumerate(model.reactions[0:]):

 ## Collect information from the reaction

 # Get the upper and lower bounds for the reaction

 bounds = x2.bounds

 # Get the EC code for the reaction

 try:

 if 'ec-code' in x2.annotation:

 EC = x2.annotation['ec-code']

 else:

 EC = ''

 # Get the species in the reaction

 species = [s.id for s in x2.reactants] + [s.id for s in x2.products]

 # Get the stoichiometric coefficients for each species

 species3 = [{s.split(' ')[0]: -1} if len(s.split(' ')) == 1 else {s.split(' ')[1]: -abs(float(s.split(' ')[0]))}

for s in re.split(' --> | <=> ', re.sub('[a-z]+', '',x2.reaction))[0].split(' + ')] + [{s.split(' ')[0]: 1} if

len(s.split(' ')) == 1 else {s.split(' ')[1]: float(s.split(' ')[0])} for s in re.split(' --> | <=> ', re.sub('[a-z]+',

'',x2.reaction))[1].split(' + ')]

 species3 = dict(ChainMap(*species3)) # Convert the list of species and coefficients to a

dictionary

 # Get the GPR for the reaction

 gpr = x2.gpr

 # Get the annotations for the reaction

 annotation2 = x2.annotation

 # Get the compartments for each species

 locations = list(set([model2.metabolites.get_by_id(s).compartment for s in species]))

 ## Mass balanced

 mb = x2.check_mass_balance() # Check if the reaction is mass balanced

 all_met_have_formula_test = min([1 if ListOfMetFrom[x] else 0 for x in species]) # Check if all

metabolites in the reaction have a formula

 # If all metabolites have a formula, replace the metabolite IDs with the corresponding formula

 if all_met_have_formula_test == 1:

 FromList=list()

 for y in species:

 eq = re.sub(y, ListOfMetFrom[y], eq)

 eq_test = re.sub(y, ListOfMetFrom[y], eq_test)

 # Check if the reaction is balanced and not an exchange or sink reaction

 if len(species) > 1 and all_met_have_formula_test == 1 and not test_reaction_balance(eq_test)[0]:

 MB = mass_balance(eq, 'R') # Get the mass balance for the reaction

 # Get the new species and stoichiometric coefficients

 NewSpecies = MB[6]+MB[7] # Species added to substrates and/or products to mass balance

 NewStoichimotry = MB[0]+MB[1] # Stoichimetry of the reblanced reaction

 # Modify x2 according to NewSpecies and NewStoichimotry

 ## S-GPRs and Location

 for ec in EC:

 new_gpr = getGPR(ec, session) # build a new S-GPR and GPR

 if new_gpr:

 new_locations = getLocation(new_gpr[3], new_gpr[1], new_gpr[2], 1, location_pkl_file,

session) # Identify the subcellular location based on the genes in the GPR

 variables[ec].extend(new_gpr) # Add new GPR to the entry in the dictionary varibles with

key “ec”

 variables[ec].extend(new_locations) # Add new Subcellular location to the entry in the

dictionary varibles with key “ec”

 variables[x.id] = meltGeneList(new_gpr in variables[ec], new_location in variables[ec]) #

integrate the all the new_gpr and new_location of a given reaction

 for i in variables[x.id]:

 CSL = ith subcellular location with the corresponding S-GPR/GPR and genes

 if x.id for the ith subcelular location does not exist in the model:

 Build a new reaction with the attibutes in x.id and the subcellular location specific

information in CSL

 else:

 Update the information regarding genes and S-GPR/GPR in the existing reaction

E. Sanitize model and store the final model in a SBML file

- Eliminate duplicate reactions

- Eliminate unconnected metabolites

- Rebalance metabolic reaction

- write_sbml_model(sanitized_model, “Output_model.xml”) # Writte the sbml model:

3. Pseudo Code for “Building model” process

A. Build a metabolic network based on a list of pathways, add reactions, metabolites, ensure network

consistecy, curate annotation and ensure mass balance

Path = List of metabolic pathways containing pathway name and id (i.e. KEGG)

i = 0

while i < len(Path) – 1:

 # Extarct pathway information

 PathID = split_path_id(Path[i]) # pathway id

 PathName = split_path_name(Path[i]) # pathway name

 PathURL = build_path_url(PathID) # patwhway url

 PathReferer = build_path_referer(PathID)

 PathList[PathID] = create_pathway_object(PathURL, time, PathID, PathReferer, PathName) #

Pathway object gathering information from different databases

 PathNameRxn[PathName] = "" # empty dictionary for the reaction in the pathway

 j = 0

 while j < len(PathList[PathID].Reactions()):

 RxnID = get_reaction_id(j, PathList[PathID]) # Reaction identifier in the database that will be

used in the model

 if not_rxn_id_in_ident_or_equiv(RxnID): # add reaction if reaction is not previously annotated

 RxnIdent = add_rxn_id_to_ident(RxnID, RxnIdent) # add reaction ids

 RxnURL, RxnTermDyn = get_rxn_url_and_term_dyn(j, PathList[PathID]) # reaction url and

reversibility

 RxnList[RxnID] = create_reaction_object(RxnURL, time, RxnID, PathName, RxnTermDyn) #

Reaction object gathering information from different databases

 RxnCmp = get_rxn_compounds(RxnID, RxnList) # identify reaction’s substrates and products

 c = 0

 while c < len(RxnCmp):

 CompID = RxnCmp[c]

 if not_comp_id_in_ident_or_equiv(CompID): # add metabolite is not previously annotated

 MetIdent = add_comp_id_to_ident(CompID, MetIdent)

 CompURL = build_comp_url(CompID)

 MetList[CompID] = create_compound_object(CompURL, CompID, time, EF,

specialCompounds) # Metabolite object gathering information from different databases

 c = c + 1

 # Mass balance reaction

 ithRxn = RxnList[RxnID]

 eq, mb_test = get_eq_and_mb_test(ithRxn, MetList) # test if reaction is umbalanced

 LibIni = wrap_rxn_subs_prod_param(ithRxn, MetList) # extract information from the reaction

object to be lately reintroduced together with the balanced reaction

 if mb_test != 0: # mass balace the reaction in case of unbalance

 IthRxnMB = mass_balance(eq, RxnID) # Mass balance the metabolic reaction

 # If an additional metabolite has to be added to mass balance the metabolic reaction check if

it/they is/are already added to the model, and if not add it/them

 if IthRxnMB[4]:

 for x in IthRxnMB[4]:

 if not extra_compound[x[0]] in MetIdent and not extra_compound[x[0]] in MetEquiv:

 MetIdent = add_extra_comp_id_to_ident(x[0], MetIdent)

 extra_url = build_extra_comp_url(extra_compound[x[0]])

 MetList[extra_compound[x[0]]] = create_compound_object(extra_url,

extra_compound[x[0]], time, EF, specialCompounds) # Metabolite object gathering information from

different databases

 RxnList[RxnID] = update_rxn_substrate_product_and_kinetics(ithRxn, LibIni, ithRxnMB,

MetList, MetEquiv) # update the reaction object with the rebalanced reaction

 update_rxn_list(RxnID, RxnList) # add updated information to the list of reactions

 j = j + 1

i = i + 1

B: Gene annotation and build S-GPRs and GPRs

GeneList = {} # Initialize an empty dictionary to store gene information

GeneIdent = [] # Initialize an empty list to store gene identifiers

g = 0

Loop through each gene-protein-reaction (GPR) association in the list

while g < len(GPRList):

 # Check if the gene identifier is already in the dictionary and has subcellular location information

 if GPRIdent[g] in GPRList.keys() and GPRList[GPRIdent[g]].GprSubcell():

 # Extract the gene names from the subcellular location information

 gene_matches = re.findall(

 "([A-Za-z0-9\-]+)",

 GPRList[GPRIdent[g]].GprSubcell()[1].replace("and", "").replace("or", ""),

)

 # Loop through each gene name in the list

 z = 0

 while z < len(gene_matches):

 # If the gene name is not already in the list of gene identifiers, add it and its information to the

dictionary

 if not gene_matches[z] in GeneIdent:

 GeneIdent = GeneIdent + [gene_matches[z]]

 GeneList[gene_matches[z]] = gene(gene_matches[z], EnsblDB) # Gene object gathering

information from different databases

 z = z + 1

 g = g + 1

C: Identify sub-cellular locations

Remove any non-alphanumeric characters from the compartment name and get a master list of IDs

CSL2 = re.sub(r'[^A-Za-z0-9]+', '', CSL)

ModMaster = list(set(LipidMasterlistOfID + listOfID))

Assign the ID to the CSL if it already exists in the CSL_ID dictionary, otherwise generate a new ID

if CSL_ID.get(CSL):

 ID = CSL_ID.get(CSL)

elif len(re.sub(" $", "", re.sub("^ ", "", CSL)).split(" ")) > 1:

 ID = (CSL2.split(" ")[0][0] + CSL2.split(" ")[1][0]).lower().replace(" ", "")

else:

 if len(CSL.split(" ")) > 1:

 ID = CSL2[0:3].lower().replace(" ", "")

 else:

 ID = CSL2[0:2].lower().replace(" ", "")

If the generated ID already exists in the master list, append a number to the end to make it unique

if not CSL_ID.get(CSL) and ID in ModMaster:

 r = re.compile(ID)

 ID = ID + str(len(list(filter(r.match, ModMaster))) + 1)

Assign the ID to the compartment in the LocVar dictionary

LocVar[CSL] = ""

LocVar[CSL] += ID

Append the ID to the list of IDs and the master list of Lipid IDs

listOfID.append(ID)

LipidMasterlistOfID.append(ID)

D: Gather all the information collected in the previous steps and write it in a model in SBML format

model = cobra_reconstruction(

 ModName, ModID, MetList_CL, RxnList_CL, GeneList, PathNameRxn, LocVar, MetEquiv,

MetList

)

cobra.io.write_sbml_model(model, Output)

4. Pseudo Code for “/merge_metabolic_netowrks_and_network_consistency/” process

A: Load input data

network_1 = read_sbml_model(GEM1) # target network (i.e. network from GEM)

network_2 = read_sbml_model(GEM2) # source network (i.e. netwokr from DBs)

B: Merge metabolites

network_3 = network_metabolites_merge(network_1, network_2)

C: Merge genes

network_3_genes = network_genes_merge(network_3_metabolites, network_2)

D: Merge reactions and test network consistency

network_3_reactions = network_reactions_merge(network_3_genes_model, network_2)

E: Sanitize model

new_network_4_metabolites = delete_isolated_metabolites(network_3_reactions)

new_network_4_reactions = delete_not_used_reactions(new_network_4_metabolites)

new_network_4_genes = delete_not_used_genes(new_network_4_reactions)

F: Write output model in a file

write_sbml_model(new_network_4_genes, Output)

