
Table S1. Papers used explicit approach 

Paper Dataset and # 
of subjects 

Specific 
Model  

Harmonized 
Domain 

Evaluation Training 
data 

Validation 
Strategies 

Library  Summary  

Garcia-
Dias et al., 
2020 [1] 

15,026 
(public) 

Random 
forest 
regression 

volumes 
(T1-w) 

Group-wise: P-values 1D vector of 
101 features 

Leave-one-
scanner-out 
CV 

Sklearn A nonlinear regression model is 
trained, where the ground truth 
harmonized measures were 
estimated by ComBat 
harmonization methods [Codes are 
available]. 

Dewey et 
al., 2019 
[2] 

12 
(institutional, 
travelling) 

CNN  intensity 
(T1-w, T2-
w, PD, 
FLAIR) 

Subject-wise: SSIM, 
AE, DSC, PVD and 
volume bias  

Group-wise: p-value 
from t-test 

2D patches 
(128×128) 

six-fold CV Keras and 
Tensorflow  

Model was trained using multi-
contrast images to achieve site-to-
site mapping. Final volumes are 
predicted in a 2.5D inference. The 
proposed method outperformed DL 
based latent space method and 
random forest-based method. 

Tong et 
al., 2020 
[3] 

5 (travelling, 
institutional) 

14 (travelling, 
public) 

CNN DKI 
measures: 
(DTI) 

Subject-wise: MSE 

Group-wise: 
Coefficient of 
Variation 

 

3D patches 
(3×3×3) 

Leave-p-
subjects-out 
CV 

Leave-one-
tissue-out 
CV  

- Train a CNN model with the DTI 
images from one scanner while 
eight DKI measures estimated from 
DTI images obtained from the 
reference scanner. The proposed 
model outperformed non-ML 
algorithms.  

Koppers et 
al., 2019 
[4] 

10 (travelling, 
public) 

CNN SH: (dMRI)  Subject-wise: MSE 3D patches 
(3×3×3) 

Ten-fold CV 
(8:2) 

- Residual network was trained to 
learnt how to predict the SH 
coefficient and performance the 
mapping across two domains using 
the predicted SH features.  

 



St‐Jean et 
al., 2020 
[5] 

14 
(travelling, 
public) 

SDL Raw signals 
(dMRI) 

Subject-wise: MNE, 
error and % of difference 

Group-wise: Hedges'g 
for t-test, KL divergence 

3D patches 
(3 × 3 × 3) 

three-fold CV, 
AIC 
minimisation 

Sklearn Apply mapping between scanners 
for matched acquisition protocols 
and then map the original and 
altered data sets toward a 
common harmonisation space 
which is created by randomly 
sampling data sets from all 
scanners [codes are available] 

Zhao et 
al., 2019 
[6] 

263 (public) 

 

GAN cortical 
thickness 
maps (T1-w 
and T2-w) 

Subject-wise: MAE, 
PSNR, Euclidean 
distances between any 
two scans 

Group-wise: PCA, 
Cohen’s d 

2D cortical 
thickness map 

Split dataset - GANs was trained to learn a site-
to-site mapping. The proposed 
method was validated on both 
synthetic paired data and real 
unpaired data, where synthetic 
paired dataset was created by 
resampling.  

Ren et al., 
2021 [7] 

246 (public) GAN intensity 
(T1-w, 
FLAIR) 

Downstream task: 
Segmentation accuracy 

2D patches 
(256 × 256) 

leave-one-
subject-out 
CV 

PyTorch By incorporating segmentation 
networks, GAN was trained and 
encouraged to produce the same 
segmentation via a segmentation-
objective. The proposed method 
was compared and outperformed 
GAN-based methods [codes are 
available] 

Robinson 
et al., 
2020  [8] 

1254 
(public) 

Transfor
mer 
network 

intensity 
(T1-w) 

Downstream tasks: sex 
classification, age 
prediction 

3D patches 
(64 × 64 × 64) 

Split dataset  PyTorch An image-and-spatial transformer 
network were trained to achieve 
site-to-site mapping. The 
proposed method was 
outperformed the GAN method. 
[codes are available] 



Dewey et 
al., 2020 
[9] 

140 
(institutional
) 

10 
(travelling, 
institutional) 

Auto-
encoder  

intensity 
(T1-w, T2-
w) 

Subject-wise: SSIM and 
PSNR 

2D patches 
(224 × 192) 

Split dataset 

 

- An auto-encoder is trained using 
paired T1-w and T2-w images 
from same subjects. Model’s 
parameters were searched using 
grid search. 

Zuo et al., 
2021 [10] 

120 
(institutional
) 

7 (travelling, 
institutional) 

Auto-
encoder  

intensity 
(T1-w, T2-
w) 

Subject-wise: SSIM and 
PSNR  

2D patches 
(224 × 192) 

Split dataset 

 

PyTorch Paired T1-w and T2-w from 
multiple sites were used to train 
the model. The proposed method 
outperform the histogram 
matching, GANs and the method 
presented in [9]. 

Zuo et al., 
2021  [11] 

20 
(travelling, 
institutional) 

100 (public) 

Auto-
encoder  

intensity 
(T1-w, T2-
w) 

Subject-wise: SSIM, 
PSNR, DSC and PVD  

2D patches 
(224 × 224) 

Split dataset 

 

PyTorch The model was developed based 
on  [9], [10]. The author proposed 
a 2.5D inference to produce the 
final volume. [codes are 
available] 

Gao et al., 
2019  [12] 

489 
(institutional
) 

10 
(travelling, 
institutional)  

GAN  Image-level 
features: 
intensity of 
T2-FLAIR 

Subject-wise: PSNR, 
histogram correlation, 
SSIM, MSD, MSE and 
average disparity  

Downstream tasks: 
classification of 
diagnosis 

2D slices (256 
× 256) 

Split dataset 

 

- Multiple generators and 
discriminators were used for each 
sites or site combinations to 
achieve the many-to-one 
mapping. The proposed method 
outperformed the histogram 
matching. 

Liu et al., 
2021 [13] 

1 (travelling, 
public)  

718 (public) 

GAN intensity 
(T1-w) 

Subject-wise: DSC, 
SSIM, Euclidean 
distances between any 
two scans 

2D slices (128 
× 128) 

Split dataset 

 

- Mapping across domains utilises a 
style-encoder to learn the scanner-
invariant style code in images.  

 



 

Weninger 
et al., 
2022 [14] 

161 
(travelling, 
public)  

GAN SH (dMRI) Subject-wise: MSE 3D patches 
(40 × 40 × 40) 

Split dataset 

 

PyTorch Travelling subject dataset which 
contains scans from 3T and 7T 
scanner were used. The results of 
supervised, unsupervised, and 
mixed training were compared.  

Torbati et 
al., 2021  
[15] 

18 
(travelling, 
institutional)   

Auto-
encoder 

intensity 
(T1-w) 

Subject-wise: SSIM, SD, 
MSE, MAD 

2D slices Train and test 
on the same 
dataset 

Tensorflow 
and keras 

The model was trained to first 
learn the embeddings with 
structural information and then 
harmonise based on the 
embeddings. The proposed 
method was outperformed the 
statistical methods [codes are 
available] 

Tian et al., 
2022  [16] 

9 (travelling, 
public) 

Auto-
encoder 

GM volume 
maps (T1-w) 

Group-wise: p-value for 
ANOVA and spearman's 
correlation, KL 
divergence 

 

2D slices 
(176×208) 

Leave-one-
subject-out 
CV 

Tensorflow 
and keras 

The autoencoder was trained and 
evaluated with traveling subject 
datasets. 2.5D interface was 
developed. The proposed model 
outperformed statistical 
harmonization methods [codes are 
available]. 

Fatania et 
al., 2022 
[17] 

310 (public)  Auto-
encoder 

Intensities 
(T1-w) 

Group-wise: p-value for 
KS and t-test 

2D slices Split dataset TensorFlow The proposed model consists of 
an auto-encoder based on site-to-
site translation. The experiment 
was tested on data from unseen 



scanners and outperformed 
statistical methods. 

Arai et al., 
2021 [18] 

616 (public) GAN Intensities 
(T1-w) 

Subject-wise: PSNR, 
MSE, SSIM 

Group-wise: t-SNE for 
cluster visualisation 

Downstream tasks: 
classification 

3D volume 
(160 × 160 × 
192) 

5-fold CV - The proposed method used GAN 
model to achieve one-to-one 
mapping, aim with obtaining a 
scanner independent low-
dimensional representation while 
preserving disease-related 
anatomical features.  

Zhong et 
al., 2020 
[19] 

84 
(institutional
) 

GAN  DTI-derived 
metric map 
(dMRI) 

Subject-wise: AE, MSE 

Group-wise: Cohen’s d, 
p-value for U test, 
Pearson correlation 

3D patches 
(30 × 30 × 8) 

Six-fold CV - Dual GANs was trained to learn 
the mappings of DTI-derived 
metrics of age-matched neonates 
from two sites. The proposed 
approach outperformed the 
statistics method. 

Moyer et 
al., 2020 
[20] 

15 
(travelling; 
public) 

Auto-
encoder 

SH (dMRI) Subject wise: MSE 

Group-wise: APE and 
Coefficient of Variation 

1D vector of 
DWI signal 

Split dataset - All scans were masked for WM 
tissue before converting them to 
the SH representation. Results for 
single and multiple sites 
mappings were compared and 
results showed that they 
outperformed to the method 
presented in [21].  

 

 

  



Table S2. Papers used implicit approach 

Paper Dataset Specific 
Techniques  

Modality Evaluation Training input Validation 
Strategies 

Software Summary  

Guan et 
al., 2021 
[22] 

2572 
(public) 

Adversarial 
transfer 
learning 

T1-w: 
intensities 

Group-wise: 
visualization 
using t-SNE 

Classification 
(downstream 
tasks) 

3D, raw 
intensities 

5-fold CV PyTorch 

 

The proposed DA technique uses an 
attention discovery module to 
locate disease-related regions in 
brain MRIs.  

Dinsdale et 
al., 2021 
[23] 

8417 
(public) 

Adversarial 
transfer 
learning 

T1-w: 
intensities 

Group-wise: 
visualization 
using t-SNE 

Downstream 
tasks: 
Segmentation, 
Brain age 
regression  

2D patches of size 
128 × 128 

5-fold CV PyTorch 

 

Adapt an iterative update approach 
to the adversarial learning [codes 
are available].  

Orbes-
Arteaga et 
al., 2019 
[24] 

133 (public) Adversarial 
transfer 
learning 

FLAIR: 
intensities 

Downstream 
tasks: 
Segmentation  

2D slices of size 
256 × 256 

Split dataset - The proposed method combines 
data augmentation strategy and 
adversarial networks to improve the 
main task performance. 

Ackaouy et 
al., 2020 
[25] 

53 (public) Adversarial 
transfer 
learning 

FLAIR:  
intensities 

Downstream 
tasks: 
Segmentation  

3D patches of size 
16 × 16 × 16 

Split dataset Keras The proposed method is based on 
the Optimal Transport, which learns 
a shared embedding for the source 
and target domains while 
preserving the discriminative 
information used by the 
discriminator.  



Zhang et 
al., 2019  
[26] 

1506 
(public) 

Adversarial 
transfer 
learning 

T1-w: 
intensities 

Downstream 
tasks: 
Classification  

2D slices of size 
256 × 256 

2-fold CV PyTorch  

 

The model utilizes a cycle feature 
adaptation module to harmonize 
features. 

Yousefnez
had et al., 
2020 [27] 

142 (public)  Feature 
extraction  

fMRI: time-
series raw 
signals 

Downstream 
tasks: 
Classification  

2D time-series 
raw signals (1D 
flatten voxel) 

Leave-one-
subject out CV 

PyTorch  

 

First extracts a set of common 
features for all subjects in each site, 
and then then maps these site-
specific features to a global shared 
space. 

Wang et 
al., 2020 
[28] 

468 (public) Feature 
extraction  

fMRI: 
functional 
connectivity  

Downstream 
tasks: 
Classification  

2D functional 
connectivity 
matrix of size 116 
× 116 

5-fold CV - The proposed method treats one site 
as a target domain and the 
remaining sites as source domains. 
Transform the source domains to a 
common space using low-rank 
representation. 

Wang et 
al., 2022 
[29] 

609 (public) Feature 
extraction  

fMRI: 
functional 
connectivity 

Downstream 
tasks: 
Classification  

2D functional 
connectivity 
matrix of size 64 
× 64 

leave-one-out 
CV 

- Use a nested singular value 
decomposition method to mitigate 
inter-site heterogeneity and extract 
features by learning both local 
cluster-shared features across sites 
and global category-shared features. 

Delisle et 
al., 2021 
[30] 

1118 (pubic) Adversarial 
transfer 
learning 

T1-w, T2: 
intensities 

Downstream 
tasks: 
Segmentation  

3D patches of size 
32 × 32 × 32 

Split dataset PyTorch The overall architecture consists of 
a generator, a segmenter that 
outputs a segmentation map from 
output of the generator and a 
discriminator [codes are available]. 



Huang et 
al., 2020 
[31] 

973 (public) Adversarial 
transfer 
learning 

fMRI: 
connectome-
based features  

Downstream 
tasks: 
Classification  

1D vector of 
connectome-
based features 

10-fold CV - The classification network with 
adversarial module was trained on 
source domains and then tested on 
another unlabelled target domain.  

C. Monte-
Rubio et 
al. [32] 

303 
(institutional
) 

Fine-tuning T1-w: 
segmentation 
map 

Downstream 
tasks: 
Classification  

2D voxel wise 
segmented data of 
GM and WM 

Leave-one-
out-out CV 

 

R package Train a Gaussian process site 
classifier to estimate the 
harmonisation parameters. Then 
encode the parameters for the main 
classifier.  

Chen et al., 
2020 [33] 

1380 
(public) 

Fine-tuning Diffusion 
MRI: tract-
specific 
analysis 
results 

Downstream 
tasks: Brain 
age regression  

3D image-feature 
data with size of 
100 × 76 × 9 

10-fold CV MATLAB Use model constructed with a large 
dMRI dataset as the source domain, 
and then transfer it to three target 
domains with distinct acquisition 
scenarios [codes are available]. 

Wachinger 
and 
Reuter, 
2016  [34] 

1350 
(public) 

Fine-tuning T1-w: image-
features  

Downstream 
tasks: 
Classification  

1D vector of 
cortical thickness, 
brain volume and 
shape features 

Split dataset R package The DA technique based on the 
fine-tuning via instance weighting 
was used to transfer between the 
classifier on two databases.  

Ghafoorian 
et al., 2017  
[35] 

439 (public) Fine-tuning T1-w, FLAIR: 
intensities 

Downstream 
tasks: 
Segmentation  

2D patches of size 
32 × 32 

Split dataset - The DA technique based on fine-
tuning was used to transfer the 
original to the follow-up scan 
domain due to a change of scanner 
parameters. The same segmentation 
annotations were used for both 
domain during training and testing. 

Balboni et 
al., 2022 
[36] 

73 
(institutional
)  

Fine-tuning T1-w: 
intensities 

Downstream 
tasks: 
Segmentation  

3D patches of size 
of 32 × 64 × 64 

Split dataset Tensorflo
w and 
keras 

This study fine-tunes the network 
trained in a previous study using 
ADNI datasets to segment scans in 



three new datasets [codes are 
available]. 

Shi et al., 
2021 [37] 

343 (public) Fine-tuning fMRI: 
functional 
connectivity  

Downstream 
tasks: 
Classification  

2D functional 
connectivity 
matrix of size 90 
× 90 

Five-fold CV - The DA method is based on a three-
way decision model based on 
triangular fuzzy similarity and 
divide the objects in the target 
domain with coarse granularity. 

van 
Opbroek et 
al., 2015 
[38] 

56 (public) Fine-tuning T1, T2, and 
FLAIR: 
intensities 

Downstream 
tasks: 
Segmentation  

2D voxel-wise 
data 

CV - Perform regions and lesion 
segmentation using transfer 
learning considering unbalance 
training data. 

Wang et 
al., 2022 
[39] 

2641 
(public) 

Fine-tuning T1-w: 
intensities 

Group-wise: 
visualization 
using t-SNE 

Downstream 
tasks: 
Classification  

3D volume of size 
193 × 229 × 193 

5-fold CV PyTorch Introduce a regularization term in 
fine-tuning process of domain 
adaptation for diverse population 
and imaging devices.  

Shi et al., 
2022 [40] 

452 (public) Fine-tuning fMRI: 
functional 
connectivity 

Downstream 
tasks: 
Classification  

1D voxel wise 
vector 

Split dataset - Estimate the weight coefficient of 
each source domain to accurately 
describe the importance. And then 
adjust the sampling weights for the 
main network, using optimal 
transport theory. 

Opbroek et 
al., 2015 
[41] 

61 (public) Fine-tuning T1-w: 
intensity 

Downstream 
tasks: 
Segmentation 

2D images Leave-one-
domain-out/ 
Leave-one-
subject-out 
CV  

LIBSVM Estimate a weight to each image 
based on the distribution of its 
voxels in the feature space. The 
voxels and weights of the training 
images are then used to train a 
weighted classifier.  



Ma et al., 
2018 [42] 

300 (public) Multi-task 
learning 

T1-w: 
intensities 

downstream 
tasks : 
Classification  

1D voxel-wise 
data 

5-fold CV - The proposed method performed 
multi-task learning for multi-site 
data learning. 

1D: one dimensional  

2.5D: pseudo three dimensional 

2D: two dimensional 

3D: three dimensional 

ADL: adaptive dictionary learning 

AE: Absolute error 

AIC: Akaike information criterion 

APE: Absolute Percentage Error 

CNN: Convolutional neural network 

CV: cross validation 

DA: domain adaptation 

DKI: diffusion kurtosis imaging 

DSC: Dice similarity coefficient 

GAN: Generative Adversarial Networks 

KL: Kullback–Leibler 

KS: Kolmogorov–Smirnov 

MAD: Mean absolute deviation 

MAE: mean solute error 

MD: mean diffusivity 

MNE: mean normalized error 

MSD: Mean squared deviation 

MSE: root mean square error 

PSNR: peak-signal-to-noise ratio 

PVD: percent volume difference 

ROI: region of interest 

SDL: spare dictionary learning 

SH: spherical harmonic 

SSIM: structural similarity index measure 
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Table S3: Quality Assessment of All Included Articles 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Score 
[11] 1 1 1 1 1 1 1 1 1 1 10 
[22] 1 1 1 1 1 1 1 1 1 1 10 
[42] 1 1 1 1 1 1 1 1 1 0.5 9.5 
[33] 1 1 1 1 1 1 1 1 0 1 9 
[2] 1 1 1 1 1 1 1 0 1 1 9 
[10] 1 1 1 1 1 0.5 1 1 1 0.5 9 
[16] 1 1 1 1 1 1 1 1 0 1 9 
[20] 1 1 1 1 1 1 1 0 1 1 9 
[28] 1 1 1 1 1 1 1 1 1 1 9 
[29] 1 1 1 1 1 1 1 1 1 1 9 
[30] 1 1 1 1 1 1 1 1 0 1 9 
[32] 1 1 1 1 1 1 1 1 0 1 9 
[39] 1 1 1 1 1 1 1 0 1 1 9 
[40] 1 1 1 1 1 0.5 1 1 1 0.5 9 
[5] 1 1 1 1 1 1 0.5 0 1 1 8.5 
[7] 1 1 1 0.5 1 1 1 0 1 1 8.5 
[12] 1 1 1 1 1 1 1 1 0 0.5 8.5 
[34] 1 1 1 1 1 1 1 1 0 0.5 8.5 
[38] 1 1 0 1 1 1 1 1 0 1 8 
[1] 1 1 1 1 1 1 1 0 0 1 8 
[15] 1 1 1 1 1 1 1 1 0 0.5 8 
[18] 1 1 1 1 1 1 1 0 0 1 8 
[19] 1 1 1 0.5 1 1 0.5 1 0 1 8 
[35] 1 1 1 1 1 1 1 0 0 1 8 
[23] 1 1 0.5 1 1 1 1 0 0 1 7.5 
[3] 1 1 1 0 1 0.5 1 1 0 1 7.5 
[13] 1 1 1 1 1 1 1 0 0 0.5 7.5 
[17] 1 1 0.5 0.5 1 1 0.5 1 0 1 7.5 
[24] 1 1 0.5 1 0.5 1 0.5 1 1 0 7.5 
[26] 1 1 1 1 1 0.5 0.5 0 1 0.5 7.5 
[27] 1 1 1 0.5 0.5 0.5 1 1 1 0 7.5 
[31] 1 1 1 1 0.5 0.5 0.5 1 1 0 7.5 
[37] 1 1 1 0.5 0.5 1 1 0 1 0.5 7.5 
[4] 0.5 1 1 1 1 1 0.5 0 1 0 7 
[25] 1 1 1 1 1 1 0.5 0 0 0.5 7 
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[36] 1 1 1 1 1 1 0.5 0 0 0.5 7 
[41] 1 1 1 0.5 1 0.5 1 0 0 1 7 
[14] 1 0.5 1 1 1 1 0.5 0 0 0.5 6.5 
[8] 1 1 0.5 0.5 1 0.5 0.5 0 1 0 6 
[6] 0.5 1 0.5 0.5 1 1 1 0 0 0 5.5 
Average 0.98 0.99 0.91 0.85 0.95 0.90 0.86 0.53 0.475 0.70 8.16 
 

 

Sub-Table of S3 (S3-1): Quality assessment of all articles that used explicit approaches 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Score 

[11] 1 1 1 1 1 1 1 1 1 1 10 

[2] 1 1 1 1 1 1 1 0 1 1 9 

[10] 1 1 1 1 1 0.5 1 1 1 0.5 9 

[16] 1 1 1 1 1 1 1 1 0 1 9 

[20] 1 1 1 1 1 1 1 0 1 1 9 

[5] 1 1 1 1 1 1 0.5 0 1 1 8.5 

[7] 1 1 1 0.5 1 1 1 0 1 1 8.5 

[12] 1 1 1 1 1 1 1 1 0 0.5 8.5 

[1] 1 1 1 1 1 1 1 0 0 1 8 

[15] 1 1 1 1 1 1 1 1 0 0.5 8 

[18] 1 1 1 1 1 1 1 0 0 1 8 

[19] 1 1 1 0.5 1 1 0.5 1 0 1 8 

[3] 1 1 1 0 1 0.5 1 1 0 1 7.5 

[13] 1 1 1 1 1 1 1 0 0 0.5 7.5 
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[17] 1 1 0.5 0.5 1 1 0.5 1 0 1 7.5 

[4] 0.5 1 1 1 1 1 0.5 0 1 0 7 

[9] 1 1 1 0 1 1 1 0 0 0.5 6.5 

[14] 1 0.5 1 1 1 1 0.5 0 0 0.5 6.5 

[8] 1 1 0.5 0.5 1 0.5 0.5 0 1 0 6 

[6] 0.5 1 0.5 0.5 1 1 1 0 0 0 5.5 

Total 0.95 0.98 0.93 0.78 1.00 0.93 0.85 0.40 0.40 0.70 7.88 

 

Sub-Table of S3 (S3-2): Quality assessment of all articles that used implicit approaches 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Score 

[22] 1 1 1 1 1 1 1 1 1 1 10 

[33] 1 1 1 1 1 1 1 1 0 1 9 

[42] 1 1 1 1 1 1 1 1 1 0.5 9.5 

[28] 1 1 1 1 1 1 1 1 1 1 9 

[29] 1 1 1 1 1 1 1 1 1 1 9 

[30] 1 1 1 1 1 1 1 1 0 1 9 

[32] 1 1 1 1 1 1 1 1 0 1 9 

[38] 1 1 0 1 1 1 1 1 0 1 8 

[39] 1 1 1 1 1 1 1 0 1 1 9 

[40] 1 1 1 1 1 0.5 1 1 1 0.5 9 

[23] 1 1 0.5 1 1 1 1 0 0 1 7.5 
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[34] 1 1 1 1 1 1 1 1 0 0.5 8.5 

[35] 1 1 1 1 1 1 1 0 0 1 8 

[36] 1 1 1 1 1 1 0.5 0 0 0.5 7 

[41] 1 1 1 0.5 1 0.5 1 0 0 1 7 

[24] 1 1 0.5 1 0.5 1 0.5 1 1 0 7.5 

[26] 1 1 1 1 1 0.5 0.5 0 1 0.5 7.5 

[27] 1 1 1 0.5 0.5 0.5 1 1 1 0 7.5 

[31] 1 1 1 1 0.5 0.5 0.5 1 1 0 7.5 

[37] 1 1 1 0.5 0.5 1 1 0 1 0.5 7.5 

[25] 1 1 1 1 1 1 0.5 0 0 0.5 7 

Total 1.00 1.00 0.90 0.93 0.90 0.88 0.88 0.62 0.52 0.69 8.3 

 

1 = “yes”, 0.5 = “partial”, 0 = “no”.  

Q1: Are the research aims clearly defined? 

Q2: Is the data collection procedure or the datasets clearly defined? 

Q3: Is the data pre-processing procedure clearly defined? 

Q4: Is the characteristics of the input data clearly described?   

Q5: Are the ML techniques well defined? 

Q6: Is the training procedure clearly defined? 

Q7: Are the results and findings clearly stated? 



14 
 

Q8: Are there any comparative analyses (statistical vs ML)? 

Q9: Are there any comparative analyses (ML vs ML)? 

Q10: Are the limitations of the study specified? 
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