
Article

Evaluating the Effectiveness of Designs for Low-Cost 
Digital Manufacturing Systems - Supplementary Material
Jan Kaiser *, Gregory Hawkridge, Anandarup Mukherjee and Duncan McFarlane

Department of Engineering, Institute for Manufacturing, University of Cambridge, 17 Charles Babbage Road,
Cambridge CB3 0FS, UK
* Correspondence: jk823@cam.ac.uk

Abstract: This documents provides supplementary data to the reference architecture evaluation 
paper. Specifically, it describes the design verification and validation of the Job Tracking (baseline) 
solution for Shoestring, WoT and PROSA/Erlang, and includes all 18 design structure matrices for 
the selected low-cost digital design scenarios.

1. Design veri ication of the Job Tracking solution

Table S1. Design verification of the Job Tracking solution based on Shoestring. A checklist is used 
to assess the architectural compliance.

Architecture descriptions and implementation guidelines of Shoestring [1,2] ✓or × or N/A
Each solution satisfies a single solution area in the Shoestring catalogue ✓
Each solution is made up of service modules ✓
Each service module is categorised as only one of the six service module types ✓
Service modules communicate with one another using a shoestring approved service
layer

✓

Service modules communicate using a producer-consumer model ✓
Producers make data streams/sources available ✓
Consumers fetch/subscribe to that data ✓
Producers require no knowledge of the destination of their produced data, or which
consumers are attached

✓

Service modules should support synchronous request-response communication N/A
For static data N/A
For control requests N/A

Service modules should support asynchronous (1-to-n) multicast (or pub-sub) com-
munication

✓

For regularly changing data ✓
For events/error logs ✓

Service modules are made up of building blocks ✓
Building blocks can communicate directly with other building blocks in the same
service module

✓

Building blocks may not communicate directly with other building blocks in different
service modules

✓

Communication between building blocks in different service modules must happen
over the service layer (via the service wrapper)

✓

Each building block must be characterised by one of the building block types in the
shoestring building block type catalogue

✓

Table S2. Design verification of the Job Tracking solution based on WoT. A checklist is used to 
assess the architectural compliance.

Architecture descriptions and implementation guidelines of WoT [3] ✓or × or N/A
The WoT architecture should enable mutual interworking of different eco-systems
using web technology

✓

The WoT architecture should be based on the web architecture using RESTful APIs
(e.g. HTML, PHP)

✓

Version November 21, 2023 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com
https://www.mdpi.com/journal/notspecified


Version November 21, 2023 submitted to Journal Not Specified 2 of 14

The WoT architecture should allow to use multiple payload formats which are com-
monly used in the web (e.g. JSON, XML)

✓

The WoT architecture must enable different device architectures and must not force a
client or server implementation of system components

✓

Flexibility: the WoT abstract architecture should be able to be mapped to and cover all
variations of physical device configurations

N/A

Compatibility: WoT should provide a bridge between these existing and developing
IoT solutions and Web technology based on WoT concepts

N/A

Scalability: WoT must be able to scale for IoT solutions that incorporate thousands to
millions of devices

✓

Interoperability: WoT must provide interoperability across device and cloud manufac-
turers

✓

Capable of reading thing’s status information ✓
Capable of updating thing’s status information which might cause actuation ✓
Capable of subscribing to, receiving and unsubscribing to notifications of changes of
the thing’s status information

N/A

Capable of invoking functions with input and output parameters which would cause
certain actuation or calculation

N/A

Capable of subscribing to, receiving and unsubscribing to event notifications that are
more general than just reports of state transitions

N/A

The WoT architecture should allow clients to know thing’s attributes, functionalities
and their access points, prior to access to the thing itself

✓

The WoT architecture should allow clients to search things by its attributes and func-
tionalities

N/A

The WoT architecture should allow semantic search of things providing required func-
tionalities based on a unified vocabulary, regardless of naming of the functionalities

N/A

Descriptions should be not only human-readable, but also machine-readable ✓
Descriptions should allow semantic annotation of its structure and described contents ✓
Description should be able to be exchanged using multiple formats which are com-
monly used in the web

N/A

The WoT architecture should allow describing thing’s attributes such as name, expla-
nation, version of spec, format and description itself, links to other related things and
metadata information

✓

Such descriptions should support internationalisation ✓
WoT architecture should allow describing thing’s functionalities which are shown
above

✓

The WoT architecture should support multiple web protocols which are commonly
used

✓

Such protocols include protocols commonly used in the internet and protocols com-
monly used in the local area network

✓

The WoT architecture should allow using multiple web protocols to access to the same
functionality

✓

The WoT architecture should allow using a combination of multiple protocols to the
functionalities of the same thing (e.g., HTTP and WebSocket)

N/A

The WoT architecture should support a wide variety of thing capabilities such as edge
devices with resource restrictions and virtual things on the cloud, based on the same
model

✓

The WoT architecture should support multiple levels of thing hierarchy with interme-
diate entities such as gateways and proxies

N/A

The WoT architecture should support accessing things in the local network from
the outside of the local network (the internet or another local network), considering
network address translation

N/A

The WoT architecture should allow describing applications for a wide variety of
things such as edge device, gateway, cloud and UI/UX device, using web standard
technology based on the same model

N/A

The WoT architecture should allow mapping of legacy IP and non-IP protocols to web
protocols, supporting various topologies, where such legacy protocols are terminated
and translated

N/A

The WoT architecture should allow transparent use of existing IP protocols without
translation, which follow RESTful architecture

N/A

The WoT architecture must not enforce client or server roles on devices and services
(IoT devices can be either clients or servers, or both, depending on the system architec-
ture)

✓

Access to devices is made using a description of their functions and interfaces ✓
Applications need to be able to generate and use network and program interfaces
based on metadata (descriptions)

✓

A twin has to produce a description for the virtual device and make it externally
available

N/A



Version November 21, 2023 submitted to Journal Not Specified 3 of 14

Directories can provide functionalities to allow devices and twins themselves auto-
matically or the users to manually register the descriptions, which creates devices
searchable by external entities

N/A

Security information related to devices and virtual devices needs to be described in
device descriptions

N/A

The Thing description metadata MUST be a WoT Thing Description (TD) ✓
Consumers MUST be able to parse and process the TD representation format, which is
based on JSON

✓

To be a Thing, however, at least one TD representation MUST be available ✓
WoT Thing Descriptions MAY link to other Things and other resources on the Web to
form a Web of Things

N/A

An identifier in the WoT Thing Description MUST allow for the correlation of multiple
TDs representing the same original Thing or ultimately unique physical entity

N/A

Things MAY be bundled together with a Consumer to enable Thing-to-Thing interac-
tion

✓

The configuration of the Consumer behavior MAY be exposed through the Thing ✓
Things MAY offer three other types of Interaction Affordances defined by this specifi-
cation: Properties, Actions, and Events

✓

The state exposed by a Property MUST be retrievable (readable), MAY be updated
(writeable), and MAY choose to make Properties observable by pushing the new state
after a change

✓

Properties MAY contain one data schema for the exposed state ✓
An Action MAY manipulate state that is not directly exposed, manipulate multiple
Properties at a time, or manipulate Properties based on internal logic

✓

Invoking an Action MAY also trigger a process on the Thing that manipulates state
(including physical state through actuators) over time

N/A

Actions MAY contain data schemas for optional input parameters and output results ✓
Events MAY be triggered through conditions that are not exposed as Properties N/A
Events MAY contain data schemas for the event data and possible subscription control
messages

N/A

For links, extension relation types MUST be compared as strings using a case-
insensitive comparison

✓

For links, all-lowercase URIs SHOULD be used for extension relation types N/A
Form contexts and submission targets MUST both be Internationalized Resource
Identifiers (IRIs)

N/A

Form context and submission target MAY point to the same resource or different
resources, where the submission target resource implements the operation for the
context

N/A

For forms, well-known operation types MUST follow the ABNF and MUST be com-
pared using a case-insensitive comparison

N/A

For forms, the set of predefined operation types MAY be augmented by Extension
operation types chosen by applications

N/A

For forms, extension operation types MUST be URIs N/A
For forms, extension operation types MUST be compared as strings using a case-
insensitive comparison

N/A

For forms, all-lowercase URIs SHOULD be used for extension operation types N/A
For forms, the request method MUST identify one method of the standard set of the
protocol identified by the submission target URI scheme

N/A

Form fields are optional and MAY further specify the expected request message for
the given operation

N/A

Form fields MAY depend on the protocol used for the submission target as specified
in the URI scheme

N/A

Interaction Affordances MUST include one or more Protocol Bindings ✓
Protocol Bindings MUST be serialized as hypermedia controls to be self-descriptive
on how to activate the Interaction Affordance

✓

The hypermedia controls MUST originate from the authority managing the Thing that
is providing the corresponding Interaction Affordance

✓

The hypermedia controls MAY be cached outside the Thing and used for offline
processing if caching metadata is available to determine the freshness

N/A

Eligible protocols for W3C WoT MUST have an associated URI scheme that is registered
with IANA

✓

Eligible protocols for W3C WoT MUST be based on a standard set of methods that are
known a priori

✓

All data (a.k.a. content) exchanged when activating Interaction Affordances MUST be
identified by a media type in the Protocol Binding, e.g. application/json

✓

Protocol Bindings MAY have additional information that specifies representation
formats in more detail than the media type alone

N/A

Corresponding Interaction Affordances SHOULD declare a data schema to provide
more detailed syntactic metadata for the data exchanged

✓



Version November 21, 2023 submitted to Journal Not Specified 4 of 14

Servient software stack (representation of a Thing called Exposed Thing including its
WoT Interface available to Consumers of the Thing) are used to enable direct/indirect
communication between Things and consumers

✓

TD generated by an Intermediary MAY contain interfaces for other communication
protocols

N/A

Table S3. Design verification of the Job Tracking solution based on PROSA/Erlang. A checklist is 
used to assess the architectural compliance.

Architecture descriptions and implementation guidelines of PROSA/Erlang [4,5] ✓or × or N/A
Holon structure: an autonomous and co-operative building block of a manufacturing
system consisting of an information processing part and often a physical processing
part

✓

Autonomy: entities are capable of creating and controlling the execution of its own
plans and strategies

✓

Cooperation: a set of entities develops mutually acceptable plans and executes these
plans

✓

Holarchy: a system of holons that can cooperate to achieve a goal or objective by
defining basic rules for cooperation of the holons and thereby limiting their autonomy

✓

Aggregation: a clustered set of related holons that forms a bigger holon with its own
identity

N/A

Specialisation: separate basic holons into product holons (hold process and product
knowledge), resource holons (offer production capacity and functionality), and or-
der holons (manages service provided by resource holons via exchanging process
execution information)

✓

Staff holons: assist basic holons in performing their task N/A
Inter-holon and intra-holon communication is implemented in Erlang ✓
Each RH consists of four elements: a communication component, an agenda manager,
an execution component, and an interface component

✓

The agenda manager can be implemented through a generic server or a finite state
machine

✓

The execution component is implement via a finite state machine ✓
The interface component can be implemented by using OTP functions for TCP/IP or
UDP communication) or through ports (or linked-in port drivers)

✓

The intra-holon components of OHs are adapted from the RH structure ✓
Data flows through OH (RH to RH communication is not specified) ✓

2. Design validation of the Job Tracking solution

Table S4. Functionality testing as part of the design validation of the Job Tracking solution 
for Shoestring, WoT and PROSA/Erlang. The functionality is tested by checking if all 
specifications of the Job Tracking solution have been met. These specifications have been 
identified through conducting an in-company workshop.

Services Functionality Shoestring WoT PROSA/Erlang
Sensing Barcode scanning 1 1 1
Data States of jobs 1 1 1

Planned times 0 0 0
Where a job is at a specific time 1 1 1

Commands Login 0 0 0
Information Actual times vs planned times 0 0 0
Action Scan barcode 1 1 1

Search jobs by date 1 1 1
Search jobs by job number 1 1 1
Search jobs by machine number 0 0 0
Open user specific dashboards 1 1 1

63.6% 63.6% 63.6%



Version November 21, 2023 submitted to Journal Not Specified 5 of 14

Table S5. Interoperability testing of the Job Tracking solution designed based on Shoestring. 
The interoperability is tested for the main architectural elements of the design, namely the data 
collection (DC), data storage (DS) and user interface service modules (UI1, UI2, UI3). Its key 
concerns revolve around the exchange and interpretability of data among service modules and 
complete digital systems.

Checks Source Target 1 or 0 Score

In
tr

a-
sy

st
em

in
te

ro
pe

ra
bi

li
ty

Can the source exchange information with
the target?

DC DS 1 1
UI1 0 0
UI2 0 0
UI3 0 0

DS DC 1 1
UI1 1 1
UI2 1 1
UI3 1 1

UI1 DC 0 0
DS 1 1
UI2 0 0
UI3 0 0

UI2 DC 0 0
DS 1 1
UI1 0 0
UI3 0 0

UI3 DC 0 0
DS 1 1
UI1 0 0
UI2 0 0

Are special/custom hardware drivers needed
for operating components?

DC 0 1
DS 0 1
UI1 0 1
UI2 0 1
UI3 0 1

Are special/custom software drivers needed
for operating components?

DC 0 1
DS 0 1
UI1 0 1
UI2 0 1
UI3 0 1

Can information be interpreted between ser-
vices directly (without drivers)?

1 1

Are data exchange formats between services
common?

1 1

Are parameter/variable names common
across services?

0 0

In
te

r-
sy

st
em

in
te

ro
pe

ra
bi

li
ty

Can the system integrate with the target sys-
tem directly (without converters/drivers)?

N/A N/A 0 0

Can shared resources be accessed by the sys-
tem?

0 0

Can shared functions be accessed by the sys-
tem?

0 0

Any IP-protected technologies involved? 0 1
Any licensed technologies involved? 0 1

57.9%

Table S6. Interoperability testing of the Job Tracking solution designed based on WoT. The 
interoper-ability is tested for the main architectural elements of the design, namely the barcode 
scanner thing (BST), the database thing (DBT), the user interface things (UIT1, UIT2, UIT3), and the 
consumer (C). Its key concerns revolve around the exchange and interpretability of data among things 
and complete digital systems.

Checks Source Target 1 or 0 Score
Can the source exchange information with
the target?

C BST 1 1
DBT 1 1
UIT1 0 0
UIT2 0 0
UIT3 0 0



Version November 21, 2023 submitted to Journal Not Specified 6 of 14

BST C 1 1
DBT 0 0
UIT1 0 0
UIT2 0 0
UIT3 0 0

DBT C 1 1
BST 0 0
UIT1 1 1
UIT2 1 1
UIT3 1 1

UIT1 C 0 0
BST 0 0
DBT 1 1
UIT2 0 0
UIT3 0 0

UIT2 C 0 0
BST 0 0
DBT 1 1
UIT1 0 0
UIT3 0 0

UIT3 C 0 0
BST 0 0
DBT 1 1
UIT1 0 0
UIT2 0 0

In
tr

a-
sy

st
em

in
te

ro
pe

ra
bi

li
ty Are special/custom hardware drivers needed

for operating components?
C 0 1

BST 0 1
DBT 0 1
UIT1 0 1
UIT2 0 1
UIT3 0 1

Are special/custom software drivers needed
for operating components?

C 0 1
BST 0 1
DBT 0 1
UIT1 0 1
UIT2 0 1
UIT3 0 1

Can information be interpreted between ser-
vices directly (without drivers)?

1 1

Are data exchange formats between services
common?

1 1

Are parameter/variable names common
across services?

1 1

Can the system integrate with the target sys-
tem directly (without converters/drivers)?

N/A N/A 0 0

In
te

r-
sy

st
em

in
te

ro
pe

ra
bi

li
ty

Can shared resources be accessed by the sys-
tem?

0 0

Can shared functions be accessed by the sys-
tem?

0 0

Any IP-protected technologies involved? 0 1
Any licensed technologies involved? 0 1

54.0%

Table S7. Interoperability testing of the Job Tracking solution designed based on PROSA/
Erlang. The interoperability is tested for the main architectural elements of the design, namely the 
barcode scanner (BSRH), database (DBRH), and user interface resource holons (UIRH1, UIRH2, 
UIRH3), and the order holon (OH). Its key concerns revolve around the exchange and 
interpretability of data among holons and complete digital systems.

Checks Source Target 1 or 0 Score
Can the source exchange information with
the target?

OH BSRH 1 1
DBRH 1 1
UIRH1 1 1
UIRH2 1 1



Version November 21, 2023 submitted to Journal Not Specified 7 of 14

UIRH3 1 1
BSRH OH 1 1

DBRH 0 0
UIRH1 0 0
UIRH2 0 0
UIRH3 0 0

DBRH OH 1 1
BSRH 0 0
UIRH1 0 0
UIRH2 0 0
UIRH3 0 0

UIRH1 OH 1 1
BSRH 0 0
DBRH 0 0
UIRH2 0 0
UIRH3 0 0

UIRH2 OH 1 1
BSRH 0 0
DBRH 0 0
UIRH1 0 0
UIRH3 0 0

UIRH3 OH 1 1
BSRH 0 0
DBRH 0 0
UIRH1 0 0
UIRH2 0 0

In
tr

a-
sy

st
em

in
te

ro
pe

ra
bi

li
ty Are special/custom hardware drivers needed

for operating components?
OH 0 1

BSRH 0 1
DBRH 0 1
UIRH1 0 1
UIRH2 0 1
UIRH3 0 1

Are special/custom software drivers needed
for operating components?

OH 0 1
BSRH 0 1
DBRH 0 1
UIRH1 0 1
UIRH2 0 1
UIRH3 0 1

Can information be interpreted between ser-
vices directly (without drivers)?

1 1

Are data exchange formats between services
common?

1 1

Are parameter/variable names common
across services?

1 1

In
te

r-
sy

st
em

in
te

ro
pe

ra
bi

li
ty

Can the system integrate with the target sys-
tem directly (without converters/drivers)?

N/A N/A 0 0

Can shared resources be accessed by the sys-
tem?

0 0

Can shared functions be accessed by the sys-
tem?

0 0

Any IP-protected technologies involved? 0 1
Any licensed technologies involved? 0 1

54.0%

Table S8. Performance testing of the Job Tracking solution for Shoestring, WoT and PROSA/
Erlang. The performance is tested by selecting certain parameters based on the specifications of the 
solution identified through conducting an in-company workshop, and testing it against these 
parameters. The tests and results for all three reference architecture designs are the same.

Function Parameter Range/value Check
Barcode scanning Speed Time spent scanning

should not exceed 3 min
per hour

The barcode appears on the dash-
board in <5 sec, which allows up
to 36 scans per operator per hour

Data storage Update interval Real-time Real-time
User interface Refresh rate Real-time Real-time



Version November 21, 2023 submitted to Journal Not Specified 8 of 14

3. Shoestring design structure matrices

Design Structure Matrix

V
ib

ra
ti

on
Se

ns
or

Se
ns

or
Se

rv
ic

e
M

od
ul

e

D
as

hb
oa

rd
Se

rv
ic

e
M

od
ul

e

D
as

hb
oa

rd
Se

rv
er

D
as

hb
oa

rd

Shoestring

Baseline

Vibration Sensor x
Sensor Service Module 1 x

Dashboard Service Module 1 x
Dashboard Server 1 x

Dashboard 1 x

Design Structure Matrix

V
ib

ra
ti

on
Se

ns
or

Se
ns

or
Se

rv
ic

e
M

od
ul

e

A
na

ly
si

s
Se

rv
ic

e
M

od
ul

e

Th
re

sh
ol

d

D
as

hb
oa

r d
Se

rv
ic

e
M

od
ul

e

D
as

hb
oa

r d
Se

rv
er

D
as

hb
oa

r d

Shoestring

Add feature

Vibration Sensor x
Sensor Service Module 1 x

Analysis Service Module 1 x 1
Threshold 1 x

Dashboard Service Module 1 1 x
Dashboard Server 1 x

Dashboard 1 x

Design Structure Matrix

V
ib

ra
ti

on
Se

ns
or

N
oi

se
Fi

lt
er

Se
ns

or
Se

rv
ic

e
M

od
ul

e

D
as

hb
oa

rd
Se

rv
ic

e
M

od
ul

e

D
as

hb
oa

rd
Se

rv
er

D
as

hb
oa

rd
&

G
ra

ph

Shoestring

Add component

Vibration Sensor x
Noise Filter x 1

Sensor Service Module 1 1 x
Dashboard Service Module 1 x

Dashboard Server 1 x
Dashboard & Graph 1 x



Version November 21, 2023 submitted to Journal Not Specified 9 of 14

Design Structure Matrix

Te
m

pe
ra

tu
re

Se
ns

or

Se
ns

or
Se

rv
ic

e
M

od
ul

e

D
as

hb
oa

rd
Se

rv
ic

e
M

od
ul

e

D
as

hb
oa

rd
Se

rv
er

D
as

hb
oa

rd

Shoestring

Replace phys. resource

Temperature Sensor x
Sensor Service Module 1 x

Dashboard Service Module 1 x
Dashboard Server 1 x

Dashboard 1 x

Design Structure Matrix

V
ib

ra
ti

on
Se

ns
or

Se
ns

or
Se

rv
ic

e
M

od
ul

e

G
U

IS
er

vi
ce

M
od

ul
e

G
U

I

Shoestring

Replace virt. resource

Vibration Sensor x
Sensor Service Module 1 x

GUI Service Module 1 x
GUI 1 x

Design Structure Matrix

Ba
rc

od
e

Sc
an

ne
r

Sc
an

ne
r

Se
rv

ic
e

M
od

ul
e

D
at

ab
as

e#
1

Se
rv

ic
e

M
od

ul
e

D
at

ab
as

e#
1

U
I#

1
Se

rv
ic

e
M

od
ul

e

U
I#

1

U
I#

2
Se

rv
ic

e
M

od
ul

e

U
I#

2

U
I#

3
Se

rv
ic

e
M

od
ul

e

U
I#

3

Jo
b

Tr
ac

ki
ng

C
oo

rd
in

at
or

Jo
b

C
ar

ds
C

oo
rd

in
at

or

D
at

ab
as

e#
2

Se
rv

ic
e

M
od

ul
e

D
at

ab
as

e#
2

D
as

hb
oa

rd
Se

rv
ic

e
M

od
ul

e

D
as

hb
oa

rd

Shoestring

Integration

Barcode Scanner x
Scanner Service Module 1 x

Database#1 Service Module 1 x
Database#1 1 x

UI#1 Service Module 1 x
UI#1 1 x

UI#2 Service Module 1 x
UI#2 1 x

UI#3 Service Module 1 x
UI#3 1 x

Job Tracking Coordinator 1 x
Job Cards Coordinator 1 x

Database#2 Service Module 1 x
Database#2 1 x 1

Dashboard Service Module 1 1 x 1
Dashboard 1 x



Version November 21, 2023 submitted to Journal Not Specified 10 of 14

4. WoT design structure matrices

Design Structure Matrix

T
hi

ng
D

es
cr

ip
ti

on
Se

rv
er

C
lie

nt

V
ib

ra
ti

on
Se

ns
or

D
as

hb
oa

r d
Se

rv
er

D
as

hb
oa

rd

WoT

Baseline

Thing Description Server x 1 1
Client 1 x

Vibration Sensor x
Dashboard Server 1 x

Dashboard 1 x

Design Structure Matrix

Th
in

g
D

es
cr

ip
ti

on
Se

rv
er

C
lie

nt

V
ib

ra
ti

on
Se

ns
or

&
Th

re
sh

ol
d

D
as

hb
oa

rd
Se

rv
er

D
as

hb
oa

rd

WoT

Add feature

Thing Description Server x 1 1
Client 1 x

Vibration Sensor & Threshold x
Dashboard Server 1 x

Dashboard 1 x

Design Structure Matrix

Th
in

g
D

es
cr

ip
ti

on
Se

rv
er

C
lie

nt

V
ib

ra
ti

on
Se

ns
or

N
oi

se
Fi

lt
er

D
as

hb
oa

rd
Se

rv
er

D
as

hb
oa

rd
&

G
ra

ph

WoT

Add component

Thing Description Server x 1 1 1
Client 1 x

Vibration Sensor x
Noise Filter 1 x

Dashboard Server 1 x
Dashboard & Graph 1 x



Version November 21, 2023 submitted to Journal Not Specified 11 of 14

Design Structure Matrix

T
hi

ng
D

es
cr

ip
ti

on
Se

rv
er

C
lie

nt

Te
m

pe
ra

tu
re

Se
ns

or

D
as

hb
oa

rd
Se

rv
er

D
as

hb
oa

rd

WoT

Replace phys. resource

Thing Description Server x 1 1
Client 1 x

Temperature Sensor x
Dashboard Server 1 x

Dashboard 1 x

Design Structure Matrix

Th
in

g
D

es
cr

ip
ti

on
Se

rv
er

C
lie

nt

V
ib

ra
ti

on
Se

ns
or

G
U

I

WoT

Replace virt. resource

Thing Description Server x 1 1
Client 1 x

Vibration Sensor x
GUI 1 x

Design Structure Matrix

Th
in

g
D

es
cr

ip
ti

on
Se

rv
er

#1

Ba
rc

od
e

Sc
an

ne
r

D
at

ab
as

e#
1

U
I#

1

U
I#

2

U
I#

3

W
eb

so
ck

et
#1

W
eb

so
ck

et
#2

C
oo

rd
in

at
or

C
lie

nt

Th
in

g
D

es
cr

ip
ti

on
Se

rv
er

#2

V
ir

tu
al

Sc
an

ne
r

D
at

ab
as

e#
2

D
as

hb
oa

rd

W
eb

so
ck

et
#3

W
eb

so
ck

et
#4

W
eb

so
ck

et
#5

WoT

Integration

Thing Description Server#1 x 1 1
Barcode Scanner 1 x

Database#1 x 1 1
UI#1 1 x
UI#2 1 x
UI#3 1 x

Websocket#1 1 x
Websocket#2 1 1 x

Coordinator Client 1 x
Thing Description Server#2 1 x 1 1

Virtual Scanner 1 x
Database#2 x 1 1 1
Dashboard 1 x

Websocket#3 1 x
Websocket#4 1 1 x
Websocket#5 1 x



Version November 21, 2023 submitted to Journal Not Specified 12 of 14

5. PROSA/Erlang design structure matrices

Design Structure Matrix

St
ar

tN
od

e

O
r d

er
H

ol
on

Se
ns

or
R

es
ou

rc
e

H
ol

on

V
ib

ra
ti

on
Se

ns
or

D
as

hb
oa

rd
R

es
ou

rc
e

H
ol

on

D
as

hb
oa

r d
Se

rv
er

D
as

hb
oa

rd

PROSA/Erlang

Baseline

Start Node x
Order Holon 1 x 1 1

Sensor Resource Holon 1 1 x 1
Vibration Sensor x

Dashboard Resource Holon 1 1 x
Dashboard Server 1 x

Dashboard 1 x

Design Structure Matrix

St
ar

tN
od

e

O
rd

er
H

ol
on

Se
ns

or
R

es
ou

rc
e

H
ol

on

V
ib

ra
ti

on
Se

ns
or

&
Th

re
sh

ol
d

D
as

hb
oa

rd
R

es
ou

rc
e

H
ol

on

D
as

hb
oa

r d
Se

rv
er

D
as

hb
oa

rd

PROSA/Erlang

Add feature

Start Node x
Order Holon 1 x 1 1

Sensor Resource Holon 1 1 x 1
Vibration Sensor & Threshold x
Dashboard Resource Holon 1 1 x

Dashboard Server 1 x
Dashboard 1 x

Design Structure Matrix

St
ar

t N
od

e

O
rd

er
H

ol
on

Se
ns

or
R

es
ou

rc
e

H
ol

on

V
ib

ra
ti

on
Se

ns
or

&
N

oi
se

Fi
lt

er

D
as

hb
oa

rd
R

es
ou

rc
e

H
ol

on

D
as

hb
oa

rd
Se

rv
er

D
as

hb
oa

rd
&

G
ra

ph

PROSA/Erlang

Add component

Start Node x
Order Holon 1 x 1 1

Sensor Resource Holon 1 1 x 1
Vibration Sensor & Noise Filter x

Dashboard Resource Holon 1 1 x
Dashboard Server 1 x

Dashboard & Graph 1 x



Version November 21, 2023 submitted to Journal Not Specified 13 of 14

Design Structure Matrix

St
ar

tN
od

e

O
rd

er
H

ol
on

Se
ns

or
R

es
ou

rc
e

H
ol

on

Te
m

pe
ra

tu
re

Se
ns

or

D
as

hb
oa

rd
R

es
ou

rc
e

H
ol

on

D
as

hb
oa

rd
Se

rv
er

D
as

hb
oa

rd

PROSA/Erlang

Replace phys. resource

Start Node x
Order Holon 1 x 1 1

Sensor Resource Holon 1 1 x 1
Temperature Sensor x

Dashboard Resource Holon 1 1 x
Dashboard Server 1 x

Dashboard 1 x

Design Structure Matrix

St
ar

tN
od

e

O
rd

er
H

ol
on

Se
ns

or
R

es
ou

rc
e

H
ol

on

V
ib

ra
ti

on
Se

ns
or

G
U

IR
es

ou
rc

e
H

ol
on

Se
rv

er

G
U

I

PROSA/Erlang

Replace virt. resource

Start Node x
Order Holon 1 x 1 1

Sensor Resource Holon 1 1 x 1
Vibration Sensor x

GUI Resource Holon 1 1 x
Server 1 x
GUI 1 x



Version November 21, 2023 submitted to Journal Not Specified 14 of 14

Design Structure Matrix

St
ar

t N
od

e

O
rd

er
H

ol
on

#1

Sc
an

ne
rR

es
ou

rc
e

H
ol

on

Ba
rc

od
e

Sc
an

ne
r

D
at

ab
as

e#
1

R
es

ou
rc

e
H

ol
on

W
eb

so
ck

et
#1

Se
rv

er
#1

D
at

ab
as

e#
1

U
I#

1
R

es
ou

rc
e

H
ol

on

U
I#

1

U
I#

2
R

es
ou

rc
e

H
ol

on

U
I#

2

U
I#

3
R

es
ou

rc
e

H
ol

on

U
I#

3

In
te

gr
at

io
n

O
rd

er
H

ol
on

C
en

tr
al

D
at

ab
as

e
O

rd
er

H
ol

on

O
r d

er
H

ol
on

#2

D
at

ab
as

e#
2

R
es

ou
rc

e
H

ol
on

W
eb

so
ck

et
#2

Se
rv

er
#2

D
at

ab
as

e#
2

D
as

hb
oa

rd
R

es
ou

rc
e

H
ol

on

D
as

hb
oa

r d

PROSA/Erlang

Integration

Start Node x
Order Holon#1 1 x 1 1 1 1 1 1

Scanner Resource Holon 1 1 x 1
Barcode Scanner x

Database#1 Resource Holon 1 1 x 1
Websocket#1 1 x

Server#1 1 x 1
Database#1 1 1 x

UI#1 Resource Holon 1 1 x 1
UI#1 1 x

UI#2 Resource Holon 1 1 x 1
UI#2 1 x

UI#3 Resource Holon 1 1 x 1
UI#3 1 x

Integration Order Holon 1 1 x 1
Central Database Order Holon 1 1 1 x 1 1

Order Holon#2 1 1 1 x 1 1
Database#2 Resource Holon 1 1 x

Websocket#2 1 x
Server#2 1 x 1

Database#2 1 1 x
Dashboard Resource Holon 1 1 x 1

Dashboard 1 x

References
1. McFarlane, D; Ratchev, S; Thorne, A; Parlikad, A K; de Silva L; Schönfuß, B; Hawkridge, G; Terrazas, G; Tlegenov, Y. Digital

Manufacturing on a Shoestring: Low Cost Digital Solutions for SMEs. In Proceedings of Service Oriented, Holonic and Multi-agent
Manufacturing Systems for Industry of the Future, 2020.

2. Hawkridge, G; McFarlane, D; Kaiser, J; de Silva, L; Terrazas, G. Designing Shoestring Solutions: An Approach for Designing
Low-Cost Digital Solutions for Manufacturing. In Proceedings of Service Oriented, Holonic and Multi-agent Manufacturing
Systems for Industry of the Future, 2022.

3. Lagally, M; Matsukura, R; McCool, M; Toumura, K. Web of Things (WoT) Architecture 1.1 - W3C Editor’s Draft 27 May 2021.
Available online: https://w3c.github.io/wot-architecture/ (accessed on 27 May 2021).

4. Van Brussel, H; Wyns, J; Valckenaers, P; Bongaerts, L; Peeters, P. Reference architecture for holonic manufacturing systems:
PROSA Comput. Ind. 1998.

5. Kruger, K; Basson, A. Erlang-based control implementation for a holonic manufacturing cell. Int. J. Comput. Integr. Manuf. 2017.

https://w3c.github.io/wot-architecture/

	Design verification of the Job Tracking solution
	Design validation of the Job Tracking solution
	Shoestring design structure matrices
	WoT design structure matrices
	PROSA/Erlang design structure matrices
	References

