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1 Discussion and selected approach

Functional outliers are commonly classified into magnitude and shape outliers. Magnitude outliers 
may be defined by functions that deviate from the bulk of curves at some point in the definition domain 
of the functions according to some distance metric defined in their functional space [6], or whose scale [9] 
differs. There exist numerous methods to visualize and detect them, some of them being based on depth 
measures, as exposed by [19].

The other main kind of outliers are shape outliers. This type of functional outlier is significantly more 
difficult to detect, but several techniques able to deal with them have been developed in recent years. We 
can mention [18] or [1]. Some of the challenges in the use of depth measures in this case are exposed in 
[15]. Most functional outlier detection methods can be classified into one of the three following categories 
in the functional clustering domain [10]:

• Two-stage approaches: the functional data are firstly projected into the considered functional space,
in what is usually called the filtering step, and then a classical multivariate clustering procedure is
applied on the coefficients of the expansion. In this case, if Φ = {φ1, ..., φr} is the set of functions
that forms a complete orthonormal basis of F , any function zi of the space can be reconstructed
from the sampled data through an expansion of the type zi = ∑r

j=1 ajφj. In practice, we work with
a finite number family of functions (a subset of F ), which induces a representation error, and that is
commonly obtained by truncating an actual basis of F . This allows to perform statistical hypothesis
tests on the coefficients, which provides a detection criterion. An example of this approach can be
found in [2].

• Non-parametric approaches: they are based on measures of proximity and dissimilarity between
the functions. Multivariate clustering algorithms can usually be applied on these features [6].

• Probabilistic model-based approaches: they rely on the estimation of an underlying probability
model, either on some non-parametric features applied to the curves or on the coefficients of a
basis expansion. An example of this approach applied to the coefficients of a functional Principal
Components basis expansion can be found in the Ph.D. works of [16], where the coefficients of the
expansion are used to perform sensitivity analysis.

In our work, the detection procedure is based on the use of non-parametric measures and the
estimation of probabilistic models in order to reconstruct the joint probability density function of those
features.

2 Features definition of outlying functions

Depth measures [14] are a set of non-parametric features that have gained relevance in the functional
outlier detection field in recent years [5]. Generally speaking, let z1, ..., zn be a set of objects observed in
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Rp such that a random element Z describing the population is fixed, then a depth function is a mapping
D(·, Z) : Rp → R+ which provides a center-outward ordering of the data. The same definition holds for
the case where p→ ∞ for the functional framework. This functions are widely used for central tendency
estimation, outlier detection and classification.

Some of the most widely used definitions of depth measures in the functional framework are devel-
oped below.

• Band depths. Let z1, ..., zn be a sample of functional data, then the basic definition of the Band
Depth of a specific function zi takes the form [11]:

Sn,J(zi, Z) =
J

∑
j=2

S(j)
n (zi|Z), J ≥ 2 (S1)

such that:

S(j)
n (zi, Z) =

(
n
j

)−1

∑
1≤i1<...<ij≤n

1{G(zi)⊂B(zi1
,zi2 ,...,zij

)}, j ≥ 2 (S2)

with 1 the indicator function. In this case, G(zi) is the graph of the function zi, i.e. G(zi) =
{(t, zi(t)) : t ∈ T }, and B represents the band delimited by the j curves z1, ..., zj. The parameter
J restricts the maximum number of functions that delimit the bands. [12] recommend the use of
J = 3.

• A more flexible definition of this depth notion is the Modified Band Depth, which consists in replacing
the indicator function 1 by a measure of the subset where the analyzed function is within the limits
of the band. If Aj(x) ≡

{
t ∈ T : min

r=i1,...,ij
zr(t) ≤ z(t) ≤ max

r=i1,...,ij
zr(t)

}
is the mentioned subset, then

the Lebesgue measure λ of the subset, normalized by the measure of T provides a measure of how
much time the considered function remains within the bands. Taking this into account, the Modified
Band Depth can be expressed as:

MBD(j)
n (zi, Z) =

J

∑
j=2

(
n
j

)−1

∑
1≤i1<...<ij≤n

λr(A(zi; zi1 , zi2 , ..., zij)), 2 ≤ j ≤ n. (S3)

Contrary to the basic Band Depth, the MBD is sensitive to functions that deviate from the center of
the functions even if it is only for small subsets within the domain, which is naturally essential in
the outlier detection domain.

• Another widely spread definition of depth is the h-modal depth, proposed in [4]. It employs the
notion of a kernel function in order to estimate the centrality of the curve by taking into account the
degree of immersion of a certain curve with regard to the curves that lie closest to the analyzed one
according to some distance notion defined in the considered functional space.

The h-mode depth of a realization zi ∈ F with respect to the distribution of Z ∼ P ∈ P(F ) is
defined as:

hM(zi, Z) = E
(1

h
K
(‖zi − Z‖

h

))
, (S4)

which can be substituted by its empirical version (with a sample of n functional data):

hM(zi; Zn) =
K

∑
j=1

(1
ĥ

K
(‖zi − zj‖

ĥ

))
. (S5)
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In this context,‖ · ‖ is a norm defined on F , with no a priori imposed limitations. K is a measurable
kernel function K : R → R+ with h as the bandwidth parameter. The practical implementation
of this depth notion consists in substituting the actual distribution P by its empirical version
P∗ ∈ P(F ).
This definition strongly depends on the choice of the norm and the bandwidth parameter. The
authors give some orientations regarding this subject, proposing the L2 and L∞ norms, and taking h
as the 15th percentile of the distribution of ‖zi − zj‖, ∀zi, zj ∈ F . For some results on the consistency
of the h-modal depth, the reader can refer to [7].

In addition to these depth notions, some other non-parametric features can be mentioned as they will help
us characterizing functional data. The Time Series framework is significantly related to the functional
data analysis domain, and also provides some useful metrics that can help to quantify the degree of
similarity between ordered sequences. This is the case of the Dynamic Time Warping (DTW) algorithm,
whose general form is presented below [3].

Given two sequences X := (x1, x2, ..., xV), V ∈N and Y := (y1, y2, ..., yW), W ∈N, as well as a feature
space Q, and xv, yw ∈ Q for v ∈ [1 : V] and w ∈ [1 : W], we can define a local cost measure (sometimes
also called local distance measure), which is an application:

c : Q×Q → R+. (S6)

In this case, an (V, W)-warping path is a sequence p = (p1, ..., pL) with pl = (nl , ml) ∈ [1 : V]× [1 :
W], ∀l ∈ [1 : L] which also satisfies the following conditions:

• boundary condition: p1 = (1, 1) and pL = (V, W),

• monotonicity condition: v1 ≤ v2 ≤ ... ≤ vL and w1 ≤ w2 ≤ ... ≤ wL,

• step size condition: pl+1 − pl ∈
{
(1, 0), (0, 1), (1, 1)

}
for l ∈ [1 : L− 1].

The total cost cp(X, Y) of a given warping path is

cp(X, Y) :=
L

∑
l=1

c(xvl , ywl ). (S7)

Finally, an optimal warping path between X and Y is a warping path p∗ having minimal total cost
among all possible warping paths. The DTW distance between X and Y is then simply defined as the total
cost associated with the optimal warping path.

As the DTW might be expensive to evaluate, it is worth pointing out the existence of some accelerated
versions of the algorithm reducing this cost when the number of sampling points is too high. Many of
them are based on the restriction imposed to the set of acceptable (V, W)-warping paths (so that the
whole cost matrix is not needed), by introducing weight functions that privilege certain specific paths, or
by modifying the step-size condition [20].

3 Probabilistic modeling of features

The main objective of this work is to develop a novel functional outlier detection technique which is
as general as possible, and sensitive to the main types of outliers that are usually found in the industrial
domain (i.e. shape and magnitude outliers). The first problem that we may encounter when setting such
an objective is firstly the lack of a complete and indisputable definition of what constitutes an outlier in a
set of data. Considering the definition provided in [6] as data that behave in an abnormal way with respect
to the other considered objects, this approach requires the definition of what an abnormality is, and it is
usually quantified as the extremal values of a measure that is sensitive to the searched outliers.
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A more general (but more difficult to apply) definition of what constitutes an outlier is a subset of data
that has been generated by a different process that the majority of data present in the considered set [8].
As an example, a set of measurements could have a small amount of incorrect data points (measurement
errors) that may not be obvious at first (these data are not generated the same way as the others). This
can also happen in the simulation domain. Simply changing the compilers, computers or the version
of simulation codes can significantly change the outcome of any physical simulation. Finding these
abnormalities is fundamental in order to ensure the quality of any dataset.

Let us suppose that a certain number of features are available to describe our functional data and
are able to capture the specific characteristics of both central and abnormal observations. If U =
{u1, ..., ur, ..., uR} represents this set of features, with no imposed a priori restrictions on its size, such that
∀ur ∈ U , ur : F → R, then it would be possible to quantify the anomalous behavior according to each
measure through the extreme-value analysis theory.

The generalization of this theory is based on the use of probabilistic models that can be adjusted to
the data. Generally, these models are generative, i.e., they are based on the estimation of the probability of
occurrence of a data point (multivariate features in our case) accordingly with an assumed underlying
model. Once a parametric family has been chosen for the generative model, its values must be estimated
through an optimization algorithm. The use of joint multivariate probabilistic models also has the
advantage of providing a tool able of taking into account the interaction between the different features
used to evaluate the dataset, in addition to providing a score of outlyingness related to a probability of
occurrence.

When the underlying process that generates the data is unknown, the use of Gaussian Mixture Models
(GMM) [17] is practical due to the vast existent knowledge of these models. Assuming that R descriptive
features are available, the form of the associated R-dimensional multivariate Gaussian mixture density
function of the random vector u ∈ RR is

p(u) =
K

∑
k=1

ωk fk(u; µk, Σk), (S8)

where fk represents each single Gaussian multivariate probability density function, µk ∈ RR represents 
its vector of means, and Σk ∈ RR × RR is the corresponding covariance matrix. The weight of each
individual density among the K components is represented by ω ∈ RK, ∑k

K
=1 ωk = 1 and ωk > 0 

∀k ∈ {1, ..., K} and can be interpreted as the mixing probabilities of the components.

4 Pairwise comparisons of measures

In this section we showcase several tests performed on Models 1 to 4 through the combination of the 
considered couples of measures in the paper. The validation is performed on the basis of the outlyingness 
score and the ranking measures.

The Table S1 and Figures S1 and S2 summarize the results for all the replications of the 
experiments for every specific couple of features, i.e., the six possible combinations of h-mode depth 
(hM), modified band depth, dynamic time warping and the L2 metric. The average ranks of the outlier 
in each model accordingly to each chosen pair of features are shown in Table S1.

As one can see from the Table S1 and Figure S2, the features that show the highest detection 
capabilities are the ones that include at least the h-Mode depth or the DTW as a component of the 
considered Gaussian mixture model. In the case of the first two models, it is the combination of both 
features that yields the best detection results, whereas it remains close to the best result for the third and 
fourth models.

This result was expected, since the L2 norm is a very general non-parametric measure which is 
probably not well suited for the direct application to the detection of anomalies in functional data, in spite 
of its usefulness for functional data characterization. The Modified Band Depth appears to be adapted 
for a quick detection of magnitude outliers, but not such a sensitive measure regarding shape outliers, 
which are far more complicated to define, identify and detect. That also explains why the scores for the 
third model are so high with respect to the others.

4



Pairs of features Model 1 Model 2 Model 3 Model 4
BD-DTW 48.663 41.272 49.621 42.376
BD-hM 41.342 39.067 49.833 43.643
DTW-L2 44.551 42.660 50 43.842
hM-L2 48.937 44.133 49.968 41.929
hM-DTW 49.225 45.154 49.852 42.343
BD-L2 44.254 41.418 49.944 43.672

Table S1. Average rankings of the outlier for each analytical model and combination of features.
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(d) Model 4

Figure S1. Boxplots of the outlyingness score for all combinations of features in each model in the N = 
100

replications. The Standard boxplot takes into account the whole distribution of θ̂i for all the replications of 
each experiment.

The presented scores can be used in order to compare different detection methods that could be based on 
identical features (multiple testing, use of level sets, functional boxplots...) as well as a tool to compare the 
usefulness of different features for a common detection on the basis of a common detection algorithm. In 

both cases (for the boxplots of the θ̂ i and the rankings), it is possible to appreciate not only the absolute 
detection capabilities that were mentioned before, but also the relative dispersion of the data. This can 
also be interpreted as an indicator of robustness (which depends on the choice of features). When looking 

at Figures S1 and S2, several aspects can be noted. The first obvious remark is that the detection 
capabilities for the third model are far superior to those of the others. This is explained by the fact that this
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(d) Model 4

Figure S2. Boxplots of the ranking score of the outlier for all models over the N = 100 replications.

is the only one that constitutes both a shape and magnitude outliers, which largely facilitates its detection, 
even for less sensitive measures such as the L2 distance. Another interesting point is that for the first 
model, which is contaminated by a shape outlier, all of the best results are obtained by the combinations 
that employ the DTW metric. This is also coherent, since it is the feature that best takes into account the 
shape differences between the curves. Finally, when analyzing the results of the experiments, it can be 
concluded that the use of a joint model through the h-mode depth and the DTW provide not only the 
highest detection rates in general, but also the smallest dispersion out of all the possible combinations. 
This is mostly related to the fact that the DTW is the most sensitive feature when it comes to analyzing 
shape outliers (it is specifically designed to provide a measure of correspondence between sequences).

5 Complementary comparisons with other models

In this section we compare the detection capabilities of our algorithm with those of the paper [13], 
where the authors also consider a sample of n = 400 realizations of a stochastic process. Different models 
of contamination (ranging from 1% to 10% of outliers), with magnitude and shape outliers are proposed. 
They also apply similar techniques of detection, of which the parametric one is similar to ours, but 
with the notable difference of considering the contamination rate (noted ν) already known. Slightly 
adapting their models to our notations, the n = 400(1 − ν) inliers (i.e., not outliers) are generated from 
the following model:
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Zl(t) =
4

∑
j=1

ξ j sin(jπt) + εl(t), for l = 1, ..., (1− ν)n, and t ∈ [0, 1]

where ξ = (ξ1, ..., ξ4) represents a multivariate normal random variable of mean µξ = (4, 2, 4, 1) and
diagonal covariance matrix Σξ whose elements in the diagonal are (5, 2, 2, 1), and εl(t) are independent
autocorrelated random error functions.

The outlying sample of data of size nν with ν ∈ 1%, 5%, 10%, is generated from outlying function
generators according to one of the following three scenarios:

• Scenario A: magnitude outliers.Zo(t) = ∑4
j=1 ζ j sin(jπt) + εl(t), for l = 1, ..., nν, and t ∈ [0, 1],

where ζ is a normally distributed random variable of mean µζ = 2.5µxi and covariance matrix
Σζ = (2.5)2Σxi.

• Scenario B: shape outliers. Zo(t) = ∑4
j=1 ζ j sin(jπt) + εl(t), for l = 1, ..., nν, and t ∈ [0, 1], where

ζ is a normally distributed random variable of mean µζ = (4,−2, 1, 3) and covariance matrix
Σζ = Σxi.

• Scenario C: magnitude and shape outliers. The outliers are generated considering a proportion of
nν/2 outliers from Scenario A, and nν/2 outliers from Scenario B.

An illustration of the scenarios is shown in Figure S3, where the inlying curves are displayed with 
a higher degree of transparency to make the outliers more visible.
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Figure S3. Examples of the three considered scenarios for a sample of n = 400 curves with 
different degrees of contamination by the outliers (shown in red).
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The detection rates (DR) and True Negative Rates (TNR), or specificity, of the algorithm presented in 
the present paper, as well as those of the considered methodologies (parametric and non-parametric) in 
[13] are displayed in Table S2. To be precise, let P be the total amount of outliers in the sample, and I 
the total amount of inliers, and let TP be the True Positive and TN the True Negative amounts detected 
by any considered method, then DR = TP/P and TNR = TN/N averaged over the replications.

Scenario A Scenario B Scenario C
Method Metric 10% 5% 1% 10% 5% 1% 10% 5% 1%

Our algorithm DR 93.41 98.54 96.00 51.63 56.21 93.04 74.71 96.67 98.04
TNR 90.28 91.87 90.31 92.78 93.74 83.23 91.7 91.55 90.12

Entropy-parametric DR 94.15 93.21 91.72 80.74 77.39 66.92 87.55 84.93 77.65
TNR 99.35 99.45 99.92 97.86 98.81 99.66 98.62 99.21 99.77

Entropy-NonParametric DR 92.72 91.50 89.05 74.21 77.14 71.25 87.22 85.81 79.77
TNR 99.19 99.55 99.89 97.13 98.79 99.71 98.59 99.25 99.79

Table S2. Detection rates and true negative rates of the considered methods and our algorithm of 
detection.

As it can be seen, the detection rates of our algorithm are considerably higher on average when the 
sample is only slightly contaminated, whereas the detection rates become considerably lower for high 
levels of contamination. This trend is common in most unsupervised methods (see the comparisons with 
state-of-the-art methods in the main paper for example). This effect is partly due to the fact that if the 
number of outliers which follow a particular trend is too large, they might not be identified as abnormal 
realizations of the process, but rather as a different mode from the main set of curves. Shape outliers are 
particularly likely to suffer this effect, since in the considered scenarios they display similar shapes across 
the sample of outliers (see Figure S3 (b) or (c) for an illustration).
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