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1. Using traditional IQA methods to find clearest fecal microscopic image

In order to further prove the effectiveness of GMANet, in this part, we demonstrated the performance of 37 types
of traditional image quality assessment (IQA) methods and local maximum gradient (LMG) method (proposed in Sec-
tion 3.1 of our work) on finding clearest human fecal microscopic image in autofocus process. These methods contain
13 types of FR-IQA methods and 24 types of NR-IQA methods.

For each IQA method, we calculated all response values on feces dataset that contains 1036 groups of fecal mi-
croscopic images and we assumed that the image with maximum (or minimum, depending on the specific algorithm)
response value is the clearest image in each image group. To simplify the comparison, we only compared the perfor-
mance metric of prediction accuracy for each IQA method. The definitions of¢,, #, and "acc" are the same as those in

Section 4.2.2 of our work. These traditional IQA methods do not need to divide dataset into training, validation and
test set, so all algorithm results are for the whole feces dataset.

1.1 FR-IQA methods

FR-IQA methods require reference images as standards. Since there are no reference images for fecal microscopic
images, we used the assumption in [1], that is, the clearer the image is, the greater the difference between its Gaussian
blurred image and the original image is. Gaussian blur operation with kernel size 11 and sigma value 1.5 was per-
formed on feces dataset, and then original images and corresponding Gaussian blurred images are used as reference
images and distorted images, respectively. After above processing, we could use FR-IQA methods to calculate the
difference between them and choose the image with largest difference as the clearest image in each image group. The
performance of 13 types of FR-IQA methods is shown in Table 1. In SSIM-down-sampling [4] (SSIM-DS) algorithm,
images were scaled down to 256x256 pixel size. All other parameters used the data from original literature. Among
them, the algorithm with best prediction accuracy value has been marked in bold.

Table S1. The performance of 13 types of FR-IQA methods.

FR-IQA method t, t acc

PSNR 487 335 79.34%
WSNR]2] 497 330 79.83%
SSIM[3] 7 87 9.07%
MS-SSIM[4] 139 287 41.12%
SSIM-DS[4] 258 454 68.73%
IWSSIM[5] 37 156 18.63%
FSIM[e6] 388 445 80.41%
GMSD[7] 53 104 15.15%
VIFp[8] 127 258 37.16%
MAD[9] 165 316 65.06%
SQMS[10] 225 338 54.34%
ADD-SSIM[11] 282 249 51.25%
PSIM[12] 387 296 65.93%

It can be seen from Table 1 that the prediction accuracy of SSIM [3], INSSIM [5], GMSD [7], VIFp [8] and
MS-SSIM [4] are unsatisfactory, we believed that the parameters of the Gaussian blur filter can affect the algorithm
response values and the prediction performance. So we further discussed the influence of the standard deviation val-
ue of the Gaussian blur filter on the FR-IQA method performance. Figure 1 (a) and (b) show the relationship between
the prediction accuracy of FR-IQA methods and the standard deviation value of the Gaussian blur filter. For the VIFp
[8] method, the four extracted feature values VIFpl, VIFp2, VIFp3, and VIFp4 were as the response values of the four
FR-IQA methods. Therefore, for the VIFp [8] method, four “acc” values were calculated.
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Figure S1. The relationship between the performance of the FR-IQA methods and the standard deviation value of the
Gaussian blur filter. The abscissas in (a) and (b) are the standard deviation values, and the ordinates are the “acc” values.
Each color curve represents an FR-IQA method.

The best “acc” values with standard deviation values for FR-IQA methods are shown in Table 2. It can be seen
from Table 2 that the standard deviation value of the Gaussian blur filter has a great impact on the prediction accura-
cy of FR-IQA methods and the best standard deviation for each FR-IQA method is different.

Table S2. Standard deviation values of FR-IQA methods when obtaining the best “acc” values.

FR-IQA method Standard deviation Best acc
PSNR 2.7 80.98%
WSNR[2] 04 83.01%
SSIM[3] 49 72.88%
SSIM-DS[4] 5.0 71.72%
IWSSIM[5] 5.6 71.14%
FSIM[6] 1.5 80.41%
GMSDI[7] 3.0 31.47%
VIFp1[8] 0.5 73.36%
VIFp2[8] 0.4 72.30%
VIFp3[8] 04 65.54%
VIFp4[8] 0.5 66.89%
SQMS[10] 0.6 65.15%
ADD-SSIM[11] 5.5 60.33%
PSIM[12] 0.7 69.21%

1.2 NR-IQA methods

The performance of gradient-based, entropy-based, and contrast-based NR-IQA methods is shown in Table 3.
RDW abbreviates the “relative deviation weighting” method [13]. For LMG method, the size of ¢ was set to 40x40 and
fecal microscopic images were divided to overlapping ¢ with stride 40 in horizontal and vertical directions. Due to the

size of fecal microscopic image is 1600x1200, the corresponding LMG feature image is 40x30 and the response value of
LMG method is the average of LMG feature image. All other parameters used the data from original literature.

Table S3. The performance of NR-IQA methods based on gradient, entropy, and contrast.

NR-IQA method t, 4 acc

Brenner[14] 411 405 78.76%
Tenengrad[15] 182 289 45.46%
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EAV[16] 263 369 61.00%
SMD[17] 240 278 50.00%
Histogram 247 423 64.67%
Laplace[18] 425 327 72.59%
Energy Spectrum([19] 153 280 41.80%
RDWTJ13] 167 270 42.18%
RMS[20] 273 332 58.40%
JNDI21] 354 399 72.68%

LMG 149 673 79.27%

The performance of NR-IQA methods based on edge, similarity, colour, phase, and free energy is shown in Table
4. The image block size of JNB [22], CPBD[23], Blur Effect[1], and NRSS[24] methods is 40x40 pixels, and the judgment
threshold of each image block for JNB [22], and CPBD[23] is 16. All other parameters used the data from original liter-
ature.

Table S4. The performance of NR-IQA methods based on edge, similarity, colour, phase, and free energy.

NR-IQA method t, t, acc
NRSS[24] 88 376 44.79%
Blur Effect[1] 139 186 31.37%
Color[25] 42 190 22.39%
Edge Width[26] 196 270 44.98%
JNBJ[22] 222 258 46.33%
CPBDJ23] 33 213 23.75%
GPC[27] 384 402 75.81%
ARISM]28] 51 97 14.29%

The performance of transform-domain-based NR-IQA methods is shown in Table 5. [29] used Discrete Fourier
Transform (DFT), [30] and [31] used Discrete Cosine Transform (DCT), [32] used Discrete Wavelet Transform (DWT),
and [33] and [34] used Singular Value Decomposition (SVD). The image block size for [29], [30], [31], and [34] is 40x40
pixels. For [32], we used a db6 wavelet for two-layer decomposition. The neighborhood size in [33] is 41x41 pixels. All
other parameters used the values from original literature.

Table S5. The performance of transform-domain-based NR-IQA methods.

NR-IQA method t, t acc
[29] 314 338 62.93%
[30] 289 321 59.89%
[31] 23 106 12.45%
[32] 498 297 76.74%
CW-SSIM[33] 395 322 69.21%
Q[34] 278 403 65.73%

1.3 Analysis of the low prediction accuracy of LMG method

From Table 3, we found that the prediction accuracy of LMG methods was not satisfactory, and we analyzed this
problem in this section. In Figure 2, (a) and (b) are two images from the same group of fecal microscopic images. We
believed that image (b) is sharper than (a) because of the clear formed elements and impurities. However, when we
used Brenner [14], Tenengrad [15], EAV [16], SMD [17], Laplace entropy [18], and LMG methods, the algorithm re-
sponse value of image (a) is greater than that of (b). These six IQA methods use the maximum value as the definition
of clearest image, which means that these IQA methods consider image (a) to be clearer.



Appl. Sci. 2021, 11, 10293 4 of 7

(l)Th bler brage from cne grom of fecal mlcroscoplelmages. {(h) Tha ~lenraat Imags frem ons grevp of fisesl mleraseapls lrsgea

L
-
k)
i-
‘.-
- - E— — ¢ - | J S
‘Ll RME2 02EY oAl LIS TR T L B L R Bl BlAd BJAT A%af EEET DTOS BE
Respanse Valwe of LYK: \hrlll. Respease Valus of 1,310 Algarithm
{0} Elstogrem 2 LMHC alyocl thm resgponve value of lange (a). (lebpmofm-lpdhmﬂuoﬂql(h)

Figure S2. Influence of blurry or blank image regions on LMG method. (a) and (b) are two images from the same group of
fecal microscopic images; (c) and (d) are histograms of LMG algorithm response value of (a) and (b), respectively.

There are some formed elements and impurities in image (b), and most of image regions are blank without any
substance. There is some particulate matter in image (a), and most image regions are blurry (most substances are de-
focused). The algorithm response value in blank or blurry regions is close to 0, but the value of blurry regions is
slightly higher than that of blank regions. In Figure 2, (c) and (d) are the histograms of LMG algorithm response value
of (a) and (b), respectively. Due to the larger number of low response values in image (b), the mean algorithm re-
sponse value of image (b) is less than that of (a), even though the maximum value in (b) is greater than that in (a).
These low response values are noise to algorithm results.

To eliminate the impact of blurry or blank image regions, we added low response thresholds for the gradi-
ent-based algorithms (Brenner [14], Tenengrad [15], EAV [16], and SMD [17]). When calculating the mean value, a re-
sponse value below the low response threshold is not counted. After verification, the best low response thresholds for
Brenner [14], Tenengrad [15], EAV [16], and SMD [17] are 10, 19, 14 and 5, respectively. For Laplace entropy [18]
method, we only counted the entropy of pixels whose Laplace convolution value was greater than 2. For LMG meth-
od, we sorted the LMG value of all block ¢ from large to small and only calculated the average of the top 4%. When

humans judge whether images are clear, they mainly focus on sharp image regions but ignore blurry or blank image
regions, and the above processing methods use a similar principle. The results are shown in Table 6, and the predic-
tion accuracy of the six algorithms is improved.

Table S6. Performance of the six improved NR-IQA methods.

NR-IQA method Z t acc
Brenner[14] 500 366 83.59%
Tenengrad[15] 529 367 86.49%

EAV[16] 538 354 86.10%
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SMDJ[17] 530 358 85.71%
Laplace[18] 489 387 84.56%
LMG 501 408 87.74%

The analysis in this section proves that region with low gradient value has an interference effect on judging the
clearest image in autofocus process. Therefore, in our work, we introduced the gradient image of LMG algorithm into
CNN as mask attention mechanism to enhance the features of high gradient area, so that CNN pays more attention to
the image content of clear region during the training process.

2. Using resnet50 as GMANet backbone
We further used resnet50 as the backbone of GMANet, and the results are shown in Table 7.

Table S7. The performance of GMANet based on backbone resnet50.

Test set Leucorrhea dataset Blood dataset
Model ¢, t acc srocc t, 1 acc t, acc
Round 1 Lo 134 68 97.115% 0.8811 359 251 87.268% 27 23 38.462%
L 127 75 97.115% 0.8978 360 308 95.565% 49 65 87.692%
Lo 123 80 97.596% 0.8817 363 274 91.130% 69 40 83.846%
Round 2

L: 116 87 97.596% 0.8845 395 286 97.425% 31 80 85.385%

For the GMANet using resnet50 as the backbone, we used Output2 as the final output, while Output0 and Out-
putl were used as auxiliary outputs during the training process. For model L1, the gradient mask attention module
was added on the first convolution block. It can be seen from Table 1 that GMANet based on backbone resnet50 can
also obtain high prediction accuracy (equivalent to VGG16) on test set and leucorrhea dataset. However, the prediction
accuracy on blood dataset is poor and unstable, so the network structure and model selection criteria need to be further
adjusted for optimization. Therefore, we finally chose VGG16 with simple model structure as the backbone.

3. The performance of GMANet on assessing the clarity of objects

In order to verify the performance of GMANet on assessing the clarity of objects, we used the image fusion
method to stitch clearest image patches together. We removed the Outputl of GMANet and used Scorel as the net-
work output, which is 16 times smaller than the input image. We used fecal microscopic image with the size of
1024x1536 as network input.

For each group of microscopic images, we first input each image into GMANet, getting N score matrices with a
size of 64x96 (N is the number of images in this group). Then we concatenated all the score matrices along the z direc-
tion, getting a three-dimensional matrix with a size of 64x96x10. The maximum value of the three-dimensional matrix
is calculated in the z direction, and the z-axis coordinate was recorded where the maximum value is located, that is, the
corresponding image number. For each small image patch (or object), the corresponding clearest image patch is
cropped according to the image number. Finally, we stitched all clearest image patches together to obtain the fused
image. As shown in Figure 3, (a) is the clearest image in one group of fecal microscopic images and and (b) is the cor-
responding fusion image. It can be seen from Figure 3 that there are defocused white blood cells in the clearest image,
while most white blood cells in the fusion image are clear. The two blurred white blood cells on the left are defocused
during the whole autofocus process, and there is no clear image patch for them. The fusion method based on clearest
image patches is helpful to improve overall clearness of fecal microscopic image.
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Figure S3. (a) is the clearest image of one group of fecal microscopic images. (b) is the corresponding fusion image.

However, when the sample contains lots of impurities or the material in the sample solution flows slowly, the fu-

sion images will have obvious stitching traces, as shown in Figure 4. The image fusion effect based on the sharpness of
image patches is unstable. Therefore, using deep learning method to fuse the microscopic images captured in autofocus

process into one clear microscopic image is our next research direction.

Figure S4. The fusion image of one feces sample which contains lots of impurities.
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