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1. Experimental verification

In this section, we study GPOL’s algorithms accuracy on a varied set of conceptually
distinct problems. Every subsequent subsection regards one of the three main problem
types considered in GPOL: continuous, combinatorial and SML (Sections 1.1, 1.2 and 1.3,
respectively).

1.1. Continuous optimization problems

To study the algorithms’ performance on continuous problems, we considered four
optimization functions commonly used in the scientific community for algorithms’ as-
sessment [1–4]: Rosenbrock, Rastgrigin, Ackley, and De Jong’s spherical function. In our
experiments, each problem was studied with D = 2 and D = 30, and the global mini-
mum for all the 4 functions is 0 (at each dimension). The corresponding D-dimensional
formulations are as follows:
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with a = 1 and b = 100, and −2.048 ≤ xi ≤ 2.048.

fRastrigin(x) = A · D +
D

∑
i=1

(
x2

i − A cos(2πxi)
)

(2)

with A = 10 and −5.12 ≤ xi ≤ 5.12.

fAckley(x) = −a exp

−b

√√√√ 1
D

D

∑
i=1

x2
i

− exp

(
1
D

D

∑
i=1

cos(cxi)

)
+ a + exp(1) (3)

with a = 20, b = 0.2, c = 2π, and −32.768 ≤ xi ≤ 32.768.

fSphere(x) =
D

∑
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x2
i (4)

with −5.12 ≤ xi ≤ 5.12.
Several algorithms were considered in the study: RS (which serves as a baseline), HC,

SA, GA, DE, S-PSO and A-PSO. The initial candidate solutions in each algorithm were
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generated under the continuous uniform distribution, with parameters corresponding
to the constraints of the underlying problem. The neighborhood/mutation function was
the ball mutation with a fixed radius of 0.3, and a probability of mutating a solution’s
representation a given index of 0.5 and 0.2 for D = 2 and D = 30, respectively. The GA
was studied with tournament selection, whose pressure was set to 0.08, and geometric
crossover; the probabilities of applying the crossover and the mutation operators were set
to 0.7 and 0.3 respectively; elitism and reproduction were allowed. The PSO was studied
in both synchronous and asynchronous variants (S-PSO and A-PSO, respectively). Both
variants shared the same parameters. The learning factors that control the effect of the
social and cognitive influence on a particle (C1 and C2, respectively), were set to 2. A time-
decreasing inertia weight (w) was used in range [0.4, 0.9]. The velocity vector was clamped
at ±3.0. The DE was studied in the configuration DE/best/2/bin which corresponds to
vi = xbest + F1(xr1 − xr2) + F2(xr3 − xr4), where xbest is the current best solution, F1 and F2
are the corresponding mutation factors with values F1 = F2 = 0.7, and the crossover is
binomial.

All the algorithms were executed for 100 iterations with a neighborhood/popula-
tion/swarm size of 50 solutions; the only exception was RS, which was run for an equiv-
alent total number of fitness function evaluations (100x50). Performances were reported
after 30 independent runs. Figure 1 shows the cross-run average fitness during various
iterations, and Figure 2 illustrates the fitness distribution for the last generation of each run.
The x axis of in the Figure 1 enumerates successive iterations of the experiment, whereas
the y axis represents the respective averaged (across 30 runs) fitness values; the last row of
the lattice-plot provides the title for the x label, that is shared by the sub-plots in above; at
the top of each sub-figure, problems’ names and dimensionalities are reported. The x axis
of in the Figure 2 report different metaheuristics, whereas the y axis represents the respec-
tive fitness values; at the top of each sub-figure, problem’s name and dimensionality are
reported. All the problems are minimization problems, and the fitness value corresponds
to the function evaluation itself. It is possible to observe that A-PSO performs consistently
better than all other algorithms. Most of them outperform the results obtained with RS,
with the exception of HC and SA for the 2D versions of Ackley and Rastrigin. Multiple
explanations could describe this behavior, namely the “bad” initialization, propensity of
the LS algorithms to get stuck on locally-optimal solutions, sub-optimal hyper-parameters,
and mere unfitness of the specific algorithms for these functions. Nonetheless, the same
algorithms effectively outperform RS on the 30D versions of the Ackley and Rastrigin,
along with other problems and dimensions, thus suggesting a correct implementation.



Appl. Sci. 2021, 11, 4774 3 of 7

0 20 40 60 80 100
Iteration

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

AV
G

 F
itn

es
s

Best RS

OP = Ackley | D = 2

0 20 40 60 80 100
Iteration

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Best RS

OP = Ackley | D = 30

0 20 40 60 80 100
Iteration

0

5

10

15

20

25

30

35

AV
G

 F
itn

es
s

Best RS

OP = Rastrigin | D = 2

0 20 40 60 80 100
Iteration

100

200

300

400

500

Best RS

OP = Rastrigin | D = 30

0 20 40 60 80 100
Iteration

0

50

100

150

200

250

300

350

AV
G

 F
itn

es
s

Best RS

OP = Rosenbrock | D = 2

0 20 40 60 80 100
Iteration

0

2000

4000

6000

8000

10000

12000

14000

16000

Best RS

OP = Rosenbrock | D = 30

0 20 40 60 80 100
Iteration

0

2

4

6

8

10

12

14

16

AV
G

 F
itn

es
s

Best RS

OP = Sphere | D = 2

0 20 40 60 80 100
Iteration

0

50

100

150

200

250

Best RS

OP = Sphere | D = 30

ISA
HC
SA
GA
DE
S-PSO
A-PSO

Figure 1. Comparative analysis of algorithms’ performance on four common continuous optimization
problems. Cross-run average fitness during various iterations.
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(7.17E-3) (2.59E-4) (2.66E-4) (9.04E-4) (1.78E-13) (6.62E-6) (2.73E-7) (3.67E+3) (5.92E+1) (6.30E+1) (3.68E+1) (2.86E+2) (2.72E+2) (8.23E+1)

(5.02E-3) (8.07E-8) (1.30E-7) (5.49E-12) (2.04E-17) (7.58E-13) (0.00E+0) (1.18E+2) (3.29E-1) (3.19E-1) (8.59E-2) (1.24E+1) (1.39E+0) (3.51E-3)

Figure 2. Comparative analysis of algorithms’ performance on four common continuous optimization
problems. Fitness distribution for the last generation of each run, median value in parentheses.

1.2. Combinatorial optimization problems

We continued our study with the combinatorial problems, namely the Travelling
Salesman Problem (TSP), Binary Knapsack (also referred to as 0-1 Knapsack), and Bounded
Knapsack. TSP was formulated in a 13-city instance of the problem, adopting the same
distance matrix as used in [5]. Both 0-1 Knapsack and Bounded Knapsack refer to random
problem instances with 100 items and a total capacity of 1000. The Bounded Knapsack had
a maximum item repetition set to 4 items.

The study comprised RS, HC, SA, and GA. Other algorithms, due to their nature
and the underlying problem types, could not be used in this study. The initial candidate
solutions in each algorithm were generated at random, according to the problems’ search
space. For the 0-1 and Bounded Knapsack problems, the initial solutions were generated



Appl. Sci. 2021, 11, 4774 5 of 7

under discrete uniform with parameters corresponding to the constraints of the underlying
problem. For the TSP problem, the initial solutions are random permutations of cities. We
used the swap, bit-flip and discrete-range neighborhood/mutation functions for the TSP,
0-1 and Bounded Knapsack problem instances, respectively; the probability of applying
the operator at a given index of the solution’s representation was set to 0.2. The GA was
studied with tournament selection, whose pressure was set to 0.08. When solving the 0-1
and Bounded Knapsack problem instances, the one-point crossover was used; whereas,
when solving the TSP instance, partially-mapped crossover was applied. The probabilities
of applying the crossover and the mutation operators were set to 0.7 and 0.3 respectively;
elitism and reproduction were allowed.

All the algorithms were executed for 100 iterations with a neighborhood/population
size of 500 individuals; the only exception was RS, which was run for an equivalent total
number of fitness function evaluations (100x500). Performances were reported after 30
independent runs. Figure 3 shows the cross-run average fitness on various iterations,
obtained from the current-best solution, and Figure 4 illustrates the fitness distribution
for the best-found solution on the generation of each run. Note that with the adopted
standard formulation, TSP is a minimization problem, while the two Knapsack variants are
maximization problems. Although no individual algorithm appears to have a definitive
dominance across problems, all of them outperform, as expected, the results obtained with
RS.

Figure 3. Comparative analysis of algorithms’ performance on three common combinatorial opti-
mization problems. Cross-run average fitness during various iterations.

   (8595)      (7573)       (7569)       (8328)     (373.0)     (452.4)      (454.6)     (473.1)     (1219)       (1464)      (1463)       (1466)

Figure 4. Comparative analysis of algorithms’ performance on three common combinatorial optimiza-
tion problems. Fitness distribution for the last generation of each run, median value in parentheses.

1.3. Supervised Machine Learning problems

We conclude our study with SML problems, addressed from the perspective of induc-
tive programming [6,7]. Specifically, we focused on the Boston regression problem and on
the Breast Cancer classification problem: two popular benchmark problems in the scientific
community [8]. The Boston regression problem stems from the Harrison and Rubinfeld
housing dataset [9], which contains 506 instances of Boston houses described by 13 numeric
or categorical attributes. The target is predicting the value (price) of the dataset houses.
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The Breast Cancer classification problem is related to a dataset first addressed by Street et
al. [10], and the target is to assign a “benign” or “malignant” label to 569 samples of breast
exams. These are described by 30-dimensional precomputed features, extracted from from
a digitized image of a fine needle aspirate (FNA) of the breast mass.

In addition to the baseline RS, our study involved the standard GP, GSGP, as well as
HC and SA applied to the tree-based representations (HC-GP and SA-GP, respectively)

The initial candidate solutions in each algorithm were generated at random, according
to the problems’ search space. For the LS algorithms, grow initialization with a maximum
initial depth of five was used; the PB algorithms were initialized with RHH algorithms
(also with a maximum depth of five levels). The neighborhood/mutation function was
the sub-tree mutation; in the case of GSGP, the so-called geometric semantic mutation was
used, with a maximum mutation step of 5. The both GP and GSGP were studied with
tournament selection, whose pressure was set to 0.08. For GP, swap crossover was used.
The probabilities of applying the crossover and the mutation operators were set to 0.7 and
0.3 for GP; for GSGP, only the mutation was used.

All the algorithms were executed for 30 iterations with a neighborhood/population
size of 500 individuals; the only exception was RS, which was run for an equivalent total
number of fitness function evaluations (30x500). Performances were reported after 30
independent runs. The fitness function used for both problems is root-mean-square error
(RMSE), computed as the difference between the predicted “probabilities” and the binary
target in the case of binary classification.

Coherently with the analysis conducted for continuous and combinatorial optimiza-
tion problems, Figures 5 and 6 clearly highlight the improvement over the RS.
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Figure 5. Comparative analysis of algorithms’ performance on two supervised machine learning
problems. Cross-run average fitness during various iterations.
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(7.884) (5.970) (5.878) (5.172) (4.978)

 (2.71e-1) (1.72e-1) (1.91e-1) (1.83e1) (2.00e-1)

 (7.921) (6.641) (6.257) (5.775) (5.250)

(2.88e-1) (2.32e-1) (2.39e-1) (2.39e-1) (2.37e-1)
(91.23%) (96.62%) (96.24%)  (96.36%) (95.00%) (90.00%) (93.82%) (93.53%)  (93.53%) (92.94%)

Figure 6. Comparative analysis of algorithms’ performance on two supervised machine learning
problems. Fitness distribution for the last generation of each run, median fitness value and median
classification accuracy in parentheses.
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