Supplementary information

Hyperspectral Chemical Imaging of Single Bacterial Cell Structure by Raman Spectroscopy and Machine Learning

Giulia Barzan^{1,2,*}, Alessio Sacco¹, Luisa Mandrile¹, Andrea Mario Giovannozzi¹, Chiara Portesi¹, and Andrea Mario Rossi¹

- ¹ Quantum Metrology and Nano Technologies Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135 Turin
- ² Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
- * Correspondence: g.barzan@inrim.it; Tel.: +39 011 3919366

Sub-diffraction Raman Imaging on single cells of E. coli

Figure S1. A) Intensity profiles across the cell extracted from the air dried and the freeze dried bacterial cells of the 4 characteristic peaks at 2940, 1449,1243 and 780 cm⁻¹. **A)** longitudinal section; **B)** transversal section.

Figure S2. A) Confocal Microscope images of samples of *E. coli* spotted on a gold surface taken with a 100× microscope objective. **B)** Chemical Raman maps obtained on single bacterial cells, the color scale is based on the intensity of the Raman signal at 2940 cm⁻¹ of generic biomaterial; **C)** Chemical Raman maps at 1449 cm⁻¹ representing cell membrane; **D)** Chemical Raman maps at 1243 cm⁻¹ representing nucleic acids; **E)** Chemical Raman maps at 780 cm⁻¹ representing nucleic acids; (α) air dried cells, (φ) freeze dried cells.