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Supplementary Figure S1. The role of dietary polyphenols on inducing thermogenesis and mitochondrial 

biogenesis through the AMPK pathway. PGC-1α is a transcriptional regulator that induces mitochondrial 

biogenesis by activating various other transcription factors, such as NRF-1 and NRF-2, which activate 

mtTFA[1]. The mtTFA drives transcription and replication of mtDNA. PGC-1α is regulated by different 

key factors involved in mitochondrial biogenesis, including AMPK. The AMPK can also act as an energy 

sensor of the cell and works by regulating key proteins such as UCP1 and 2 involved in thermogenesis [2]. 

PGC-1α (peroxisome-proliferator-activated receptor γ co-activator-1α); NRF-1 and NRF-2 (nuclear 

respiratory factor 1 and nuclear respiratory factor 2); mtTFA (Mitochondrial transcription factor A); AMPK 

(AMP-activated protein kinase); mtDNA (mitochondrial DNA); ↑ (Up-regulation 



Supplemental Table S1. Lipase inhibitory activities of polyphenols and polyphenol-rich extracts 

Polyphenols/polyphenol-rich 

extract 

Dose Inhibition rate In-vivo/in-vitro Reference 

 (−)-Epigallocatechin 3-O-gallate 

(EGCG) from Oolong tea 

0.01 to 10 µg/ml IC50 of 0.349 Μm in-vitro [3] 

Black tea polyphenols  500 or 1000 mg/kg 

body weight 

IC50 of 15.5 In-vivo [4] 

Walnut polyphenols 0 μg/mL to 350 

μg/Ml 

IC50 of 163 μg/ml in-vitro [5] 

black chokeberry fruit polyphenols 13, 16 and 18 

mg/Ml 

60.31 μg/ml In-vitro [6] 

Kaempferol 3-O-α-L-

arabinopyranosyl-5-O-α-L-

rhamnopyranoside from Vicia 

faba L 

400 and 800 μg/mL, 53% In-vitro [7] 

Curcumin 100 Μl IC50 value 250Μm In-vitro [8] 

Chlorogenic acid 20 mg/kg 745  U/L In-vivo [9] 

24hr fermented isoflavones   50 µg/ml 63.6% In-vivo [10] 

Quercetin 40 Μm 80%  In-vivo [11] 

Pistachio green hull tannins 490 µg  IC50 value 2.26 mg/ml In-vivo [12]



Supplementary Table S2. Fatty acid synthase (FAS) inhibitory activities of polyphenols and polyphenol-

rich extracts 

Polyphenols/polyphenol-rich 

extract 

Dose Inhibition rate In-

vivo/in-

vitro 

Reference 

Resveratrol 0-25 μg/ml IC50 value 11.1 μg/ml In-vitro [13] 

Resveratrol 45 mg/kg (6 weeks) 46nmol/min/mg 

protein 

In-vivo [14] 

Mulberry polyphenols 0.5-2% (w/w) extracts 

with high fat diet (12 

weeks  

- In-vivo [15] 

Olive oil polyphenols 10, 25, 50 and 100 μM 

(72 h ) 

- In-vitro [16] 

Tea polyphenols (theaflavin and  (−)-

epigallocatechin 3-gallate) 

30 μM 52-87% In-vitro [17] 

Lotus root polyphenols 0.5% lotus root extract 

containing 892 mg/g 

for  3 weeks 

6-9nmol/min/mg

protein

In-vivo [18] 

Oolong tea polyphenols 
400 or 800 mg/kg (6 

weeks) 

- In-vivo [19] 

Ginger polyphenol 10-40 μM (2 h) - In-vitro [20]



Supplementary Table S3. The effects of polyphenols on the body thermogenesis and 

mitochondrial biogenesis 

Polyphenols Mode Dose Effect Reference 

Resveratrol Neural progenitor cells of 

mice 

2.5 mg/kg, BW (15 days) ↑SIRT3 ↑Parkin [21]

Resveratrol Human coronary arterial 

endothelial cells 

10 μmol/l (24hr) Nrf-1 

PGC-1α 

[22] 

Epigallocatechin-3-gallate Obese mice 0.2% EGCG (w/w) 

(8 weeks) 

↑PGC-1α 

↑ NRF1 

↑ Tfam 

[23] 

Quercetin Liver tissue of mice 100 mg/kg (15 weeks) ↑AMPK, 

↑Parkin 

[24] 

Curcumin (turmeric) Cancer and HUVEC cells 10 μM (1–24 h) ↑Mitophagy 

↓mTOR 

↑LC3-II 

[25] 

Myricetin, gallic acid, 

caffeic acid, and catechin 

3T3-L1 preadipocytes Various concentration of 

individual polyphenols 

(24-48hr) 

↑PGC-1α [26] 

Apple polyphenols Obese mice 5 g kg−1 APs 

supplementation for  week 

10 

↑UCP1 

↑mRNA 

↑PRDM16 

↑PGC-1α 

[27] 

p-Coumaric acid C3H10T1/2 cells 0, 1, 10, and 100 μM 

(6 days) 

↑UCP1 [28] 

Epigallocatechin gallate Obese mice 500 mg/kg (4 weeks) ↑UCP1 [29] 

Gentisic acid C3H10T1/2 cells 0 μM to 10 μM for 24 h ↑UCP1 [30] 

Tfam, mitochondrial transcription factors A, UCP1, uncoupling protein 1; NRF1, nuclear respiratory 

factor-1; SIRT3, sirtuin-3; mTOR, target of rapamycin; LC3, light chain 3; ↑, up-regulation; ↓, down 

regulation 



Supplementary Table S4: Studies evaluating the effects of polyphenols on gut microbiota composition 

in obesity 

Polyphenol Model Treatment dose Effect on gut microbiota Reference 

Green tea 

polyphenols 

Mice 0.2% by weight tea 

polyphenols per day for 8 

weeks 

Improved Bacteroidetes to 

Firmicutes ratios 

 [31] 

Berries-rich 

polyphenols 

Mice 200 mg/kg, BW per day for 

8 weeks 

Improved abundance of Akkermansia 

muciniphila, Dubosiella newyorkensis, 

and Angelakisella 

[32] 

Blueberry 

anthocyanin 

Mice 2% by weight blueberry 

extract per day for 24 

weeks 

Triggered growth of 

Lachnoclostridium, Roseburia, 

and Clostridium_innocuum_group 

[33] 

Olive oil phenolic 

compounds 

Human 

trial 

25 mL per day for 3 weeks Increased numbers of bifidobacteria [34] 

Polyphenol-rich 

cranberry 

Mice 200 mg/kg per day for 8 

weeks. 

Increased the proportion of the mucin-

degrading bacterium, Akkermansia  

[35] 

Fruits and vegetable 

polyphenols  

Human 

trial 

Fruits or vegetables with 

high-flavonoid or low 

flavonoid taken to increase 

polyphenol intake by 2, 4, 

and 6 portions after 6 

weeks. 

Modulated composition by increasing 

Clostridium leptum-Ruminococcus 

bromii/flavefaciens and 

decreasing Clostridia 

[36] 

Trans-resveratrol 

and  quercetin 

Mice 15 mg/kg, BW per trans-

resveratrol and 30 mg/kg, 

BW per  quercetin  for 6-

weeks 

Co-administration of trans-resveratrol 

and quercetin 

elevated Bacteroidetes to Firmicutes ratio 

and inhibited the growth of obesogenic 

bacteria (Erysipelotrichaceae, Bacillus, 

and Eubacterium glindroides) 

[37] 

Resveratrol 

and  quercetin 

Mice Combination of quercetin 

(30 mg, BW per day) and 

resveratrol (15 mg, BW per 

day) for 10 weeks 

Increased 

the Bacteroidetes to Firmicutes ratio and 

reduced the amounts 

[38]

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/clostridia
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/quercetin
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/erysipelotrichaceae
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/bacillus
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/eubacterium


Supplementary Table S5. Applications of nano and micro-encapsulation to improve the bioavailabilty 

and delivery of polyphenols 

Polyphenols Nano-particle involved References 

(+)-catechin Chitosan–tripolyphosphate, Chitosan-caseinophosphopeptides [39, 40] 

Quercetin Guar gum [41] 

Green tea Polyphenols Chitosan, Gelatin, Milk proteins [42] 

Tea polyphenols Chitosan [43] 

Curcumin Chitosan [43] 

Anthocyanins Cyclodextrins, Shellac and shellac/hydroxypropyl 

methylcellulose 

[44, 45] 

Tannic acid Islet [46] 

Proanthocyanidins Apo-red bean ferritin, Chitosan [47] 

Cocoa flavanols and phenolic acids High-amylose maize starch [48] 

Resveratrol Emulsion-based [49] 

Resveratrol Liposomes/Niosomes [50] 

Carob pulp polyphenolics extrac Polycaprolactone [51] 

Epigallocatechin gallate Protein-based nanoparticles [52] 

Hesperidin Sodium carboxymethyl cellulose [53]
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