	M-Se	A-Se	E-Se
Ingredients (g/kg)			
Casein	420	420	420
Gelatin	20	20	20
Fish oil	30	30	30
Corn oil	30	30	30
Wheat flour	250	250	250
Ascorbyl-2-polyphosphate	10	10	10
NaCl	10	10	10
$Ca(H_2PO_4)_2 \cdot H_2O$	10	10	10
Vitamin premix ¹	5	5	5
Mineral premix ¹	5	5	5
Betaine	10	10	10
Cellulose	200	199.9995	199.986
Na ₂ SeO ₃	0	0.0005	0.014
Proximate analysis (g/kg dry mat	tter basis)		
Moisture	70.5	69.2	68.8
Crude protein	397.5	398.2	398.8
Lipid	96.2	97.4	98.0
Ash	58.9	59.2	59.7
Se	0.00003	0.00025	0.00639

Supplemental Table 1 Feed formulation and proximate analysis of experimental diets

¹ Vitamin premix mg provided/kg diet: retinyl acetate 3; cholecalciferol 0.025; dl-α-tocopheryl acetate 30; menadione nicotinamide bisulfite 7; thiamine hydrochloride 6; riboflavin 3; pyridoxine hydrochloride 12; D-calcium pantothenate 30; niacin 50; biotin 1; folic acid 6; cyanocobalamine 0.03. Trace mineral premix mg provided/kg diet: Ca(H₂PO₃)₂·H₂O, 1000; FeSO₄·7H₂O 40; ZnSO₄·H₂O 100; MnSO₄·H₂O 40; CuSO₄·5H₂O 2; CaIO₃·6H₂O 3. Supplemental Table 2 Primers used for the analysis of the regions of selenos, selenom

and selenon promoter

Primers	Forward primer (5'-3')	Reverse primer (5'-3')
selenos pGl3-1236/+75	ctatcgataggtaccgagctcG TGCTCGCTGATCCA	cagtaccggaatgccaagcttGCCT AGAACCCGATAATTTGCT
	GTCACC	А
selenos Mut1-SREBP1c	CATCtcgtaagacgATCA	TGATcgtcttacgaGATGTGAT
	TCATCACATCACATC	GGTGTAATGCTGATATGT
	ATCACC	
selenos Mut2- SREBP1c	CTAAtcgcaaagtgGAC	TGTCcactttgcgaTTAGTGA
	AATTTAAAGGAAAC	GTTTCTCATGCAGAGTCT
	AGGTGATAAA	G
selenos Mut1-PPARy	GtagccatgtctactgCTAT	GcagtagacatggctaCAGATGT
,	CAGTGTTATCTTATG	TGTTCTACAAATTTGTTC
	GAAGTGAAAAC	TACA
selenos Mut2-PPARy	GcgcctatgcttagagACAC	TctctaagcataggcgCACTGTG
,	TGTCACTGTCCATTA	TAAGGCAGCTCTTACAG
	TGTAACCA	А
selenom pG13-521/+83	ctatcgataggtaccgagctcA	cagtaccggaatgccaagcttTACT
1	GCATCTGACTACAT	CGCGCACTAAACAGTAC
	TTTTTTAGCCT	ACA
selenom Mut-SREBP1c	CGGTtcagatatgaCAAT	ATTGtcatatctgaACCGAAAT
	GAGCCATTTGAGAA	CTGTGACCTATCGTATG
	TTGGA	
selenon pG13-1561/+54	ctatcgataggtaccgagctcA	cagtaccggaatgccaagcttACGT
1 1 1	GTACTCGCACCTAC	GCCCTACGGAGACATTA
	AAATATTAGCC	A
selenon Mut-SREBP1c	GAGTTGTtcatatctgaG	CtcagatatgaACAACTCAGG
	ATGATGATAAGTTAC	CATTTCATCACTATCA
	СТСТААТСААА	
selenon Mut-PPARv	AcatggaagagatgacGTT	CgtcatctcttccatgTCCAAGG
	CACAGGCCTCGGGT	AAACTCGGACACG
	CC	
pcDNA3.1-SREBP1c	ctagcgtttaaacttaagcttAT	aacgggccctctagactcgagCTAC
	GGATTACAAGGATG	AGAGCCATCCGTGAGCG
	ACGACGA	
selenos biotin-probe-	ACTAAATCACCCAA	TTGTCATTGGGTGATTTA
SREBP1c	ТСАСАА	GT
selenos	ACTAACCGCAAAGT	TTGTCCACTTTGCGGTTA
mut-competitor-SRERP1	GGACAA	GT
c		~.
selenom biotin-probe-	TCGGTGTCACACCA	CATTGCTGGTGTGACAC

SREBP1c	GCAATG	CGA	
selenom	TCGGTCCAGTTATG	CATTGTCATAACTGGACC	
mut-competitor-SREBP1	ACAATG	GA	
c			
selenon biotin-probe-	GTTGTGTGTGTGA	TCATCATCACACTACACA	
SREBP1c	TGATGA	AC	
selenon	GTTGTCCTGAACTC	TCATCCGAGTTCAGGAC	
mut-competitor-SREBP1	GGATGA	AAC	
с			

Genes	Forward primer (5'-3')	Reverse primer (5'-3')	Accession
Genes			no.
6ngd	GCTCTGATGTGGCGAGG	CGTAGAAGGACAGTGC	JX992745
°P8"	TGG	AGTGG	011392710
g6nd	CAGGAATGAACGCTGGG	TCTGCTACGGTAGGTC	JX992744
8°P*	ATG	AGGTCC	
fas	AACTAAAGGCTGCTGGT	CACCTTCCCGTCACAA	JN579124
J	TGCTA	ACCTC	
асса	GGGGTTTTCACGCTGCT	GGTTCTGATTGGGTCG	JX992746
	TC	TCCTG	
dgat1	CACGCTGACCTCTATGA	CTGATCTCCCGGCACC	XM 0271
0	CCC	ATTT	55099.1
dgat2	ACATCTTCGGTTATCATC	ACGATGACCACAGCGT	XM 0271
0	CTCACG	TTCC	58632.1
gpat3	AACTGGAGCTGAGCCCT	TGTAGAAGCCCTTGAG	XM_0271
	ATGT	TGAGATG	39963.1
atgl	CACTGGTGGCTGGATAA	AGACCGGAGATCTGAG	XM_0271
-	GCA	CCAT	51136.1
srebp1	CTGGGTCATCGCTTCTTT	TCCTTCGTTGGAGCTTT	JX992742
С	GTG	TGTCT	
ppara	AGGCTTCCACTATGGTG	TGGCACTTGTTCCGGT	KF614122
	TGC	TCTT	.1
grp78	GCTCCACTCGTATCCCCA	TCCGTAAGCCACAGCC	KM11487
	А	TCA	3
crt	CACCCACCTGTACACGC	TGGGGGCAAAAAGTCC	XM_0271
	TAA	CAAT	66562.1
perk	GCTGGTTGGAGGAAAAT	GGTCTCCTCCTCTCCCC	XM_0271
	CGC	AAT	42084.1
eif2α	AGGATGTGGTGATGGTG	CGATGCGGATAAGTTT	KR231690
	AA	GTT	.1
atf4	AGTGGATGCGTTTTCAG	TGATGGGAATGGGAGT	KY96382
	G	GG	3
ddit3	ACTGTCCCAAACTCATC	ACTTCCTTCCCGTAACC	MG68592
	CCC	CCT	0
irela	CCTACTTCACATCCCGCT	AGTTCGCTTGACTTTG	KP687345
	Т	CTC	
xbp1	GGTGGAAGTGGAAACC	GACCGCGATAGAGTCG	XM_0271
	GTCT	TTGT	62925.1
insigl	TGCCAAGCTGGACTTTG	CGTAGCCCAACTGAGG	KR231693
	TGA	AGAC	.1
ip3r1	ACGCCCCTTTCCGCCATA	CCACCTCAAACCGTGA	XM_0271
	Ϋ́,	CAACA	60476.1

Supplemental Table 3 Primers used for real-time quantitative PCR analysis

ip3r2	TCGCGGTAGCCATAAGC	AGAAGAACTCGTGGAC	XM_0271
in3r3			XM 0271
ipsrs	ТСАА	ТСС	66762.1
ryr2	AGCGGTAAGGGATGACA	TTTCGTCCAGAAGAGC	XM_0271
	ATAAG	ATAAGG	32735.1
gpx1	CTCTCTGAGGCATGACG	CCCAGGACGCACATAC	MN06228
	GTC	TTCA	4
gpx2	TTGAAGCACGTACGACC	AGACAGGATGCACGTT	XM_0271
	AGG	AGCC	72340.1
gpx3	ATCTGGGTCTCTGTCCTG	TGACGGAAGGGAATGT	MN06228
	CT	GCAA	5
gpx4	CTTGGGCAGAGCAATGT	CTGCTCAGTGTACGTG	MN06228
	GTG	GTGT	6
gpx6	ATCACTGCTGATGGGTT	GGAGTGCAGCTACGTC	XM_0271
	GCC	TCTC	32802.1
gpx7	GTGGATCGGTCTCCTTG	TGGCCGAACTGATTAC	XM_0271
	GTG	AGGG	39892.1
gpx8	TCACTTCACCGTGTTGG	TCCACCTCTGACCCCAT	XM_0271
	CTT	GAT	40322.1
txnrd2	GGCACTACATGGGGTAT	ACTCTGTGGCCCCAAT	MN06229
	CGG	TCAG	0
txnrd3	AGACAAGGCTGGGGTGA	GACCGCAGCTACCATA	MN06229
	TTG	CTCC	1
dio2	TCTCTCTGGAAGTCGCC	CGAAGTGCAATGCTCG	XM_0271
	TGA	GTTT	57036.1
msrb1	TCTGAATGACGGACCCA	ACTCTACTGTCCATCTG	XM_0271
	AGC	CCTCT	41750.1
selenof	GGCTTTTACCGTTGCTTC	ACCTCCCCAATTTTCAT	XM_0271
	AGT	CCA	50758.1
selenok	ACAGTAGGACACAGTCG	GCTTGACGAGGGTCTG	XM_0271
	CCA	AAAGA	66810.1
seleno	GCTGCGTTTCTTCCATGC	TCCTCCACAACTCTCC	XM_0271
т	TT	ACCT	45607.1
selenon	CCGCATCTGGGCTTTATT	GCGACGCCTGTGAGTT	XM_0271
	С	TCT	43731.1
selenos	TCCGTGGTAATGCGTCA	TTTGTCCGTCTTGGGCT	XM_0271
	GG	TC	63809.1
selenot	CCCTCTGCCTATTTACCG	CCAAACAGCATGAACG	XM_0271
_	GC	GGTC	56829.1
selenoh	GCGTGAGGCTCTCTTCT	TTTACGGGGGAGGACCC	XM_0271
-	CTG	TICT	54592.1
selenoe	GGGAAAACTGATGGCTC	GCCCAATGCTCCATGA	XM 0271

	CCA	GGAA	62931.1
selenoi	TGGGTTGTCTGTTTGCC	AGGCCTCGTACACAGA	XM_0271
	GTA	GCTA	45083.1
selenoo	GCTTCATGGACCGCTTT	CCAGGTTCCAGCGACA	XM_0271
	GAC	GATT	61831.1
selenop	TGTGGAAGGTCGGTGAT	TTGCTAAGCCTGCATCC	XM_0271
1	GTG	TCC	71023.1
selenop	GGGACACGCTACAGGGA	CCTCCACGTACGGATA	XM_0271
2	GAT	GTGC	42616.1
seleno	GTACAGGCCCAAGTTCA	TCCCCGTTCTTCTTCGA	MN06228
wl	CCA	GTG	8
seleno	AGGTATCTGGCTTCGTTG	ATCGTGGGCTTTCTGGA	XM_0271
w2a	GC	TGG	41504.1
selenou	CGTGTACACCCTGCGTC	CTGCAGAGCAGAGAA	XM_0271
	ATT	AGTGC	41798.1
sephs2	GTCCCTGATCCAGACTA	TGTCACAGAAGTGCCT	XM_0271
	CAGATTT	CCCTC	70772.1
sbp2	AGCTTGCGTTATTTGTGT	AGAGGACTGGCTCTGT	XM_0271
	GGT	CGAT	38387.1
b2m	GCTGATCTGCCATGTGA	TGTCTGACACTGCAGC	KP938520
	GTG	TGTA	.1
gapdh	GCCTCCTGCACCAC	GGACCATCCACGGT	KP893555
	AAACT	CTTCT	
rpl7	GCGCCAGATCTTCAATG	CTCATTCTGCCATGACC	KP893557
	GAG	ACG	
tbp	AGCAAAGAGTGAGGAG	ACTGCTGATGGGTGAG	KP938525
	CAGT	AACA	
18srRN	TCATTCCGATAACGAAC	GGACATCTAAGGGCAT	KP893562
A	GAG	CACA	
elfa	GTCTGGAGATGCTGCCA	AGCCTTCTTCTCAACG	KU88630
	TTG	CTCT	7.1
hprt	CCTCTCCGACTCACAGC	GTCGCCATCTTCACC	KP893556
	TAG	TCAAC	
ubce	GCCCGTGGAAGGATTCA	AAGGCAGGTGGAGAGT	KP893560
	AAA	ATGG	
tuba	CACTTCCCTCTTGCCACC	ACGGTACAGGAGACAA	KP893558
	TA	CAGG	

Abbreviations: 6pgd, 6-phosphogluconate dehydrogenase; acca, acetyl-CoA carboxylase α; atf4, activating transcription factor 4; atgl, adipose triglyceride lipase;
b2m, beta-2-microglobulin; crt, calreticulin; ddit3, DNA damage inducible transcript
3, dgat, diacylgycerol acyltransferase; dio2, deiodinase 2; eif2a, eukaryotic initiation

factor 2a; elfa, translation elongation factor; fas, fatty acid synthase; g6pd, glucose 6-phosphate dehydrogenase; gapdh, glyceraldehyde-3-phosphate dehydrogenase; gpat3, glycerol-3-phosphate acyltransferase 3; gpx, glutathione peroxidase; grp78, glucose-regulated protein 78; hprt, hypoxanthine-guanine phosphoribosyltransferase; *insig1*, insulin-induced gene 1; *ire1a*, inositol-requiring enzyme 1a; *ip3r*, inositol 1,4,5-triphosphate receptor; *msrb1*, methionine sulfoxide reductase b1; *perk*, protein kinase like endoplasmic reticulum peroxisome R kinase; pparα, proliferators-activated receptor a; rpl7, ribosomal protein L7; ryr2, ryanodine receptor 2; sbp2, SECIS binding protein 2, selenof, k, m, n, s, t, h, e, i, o, p1, p2, w1, w2a, u, selenoprotein f, k, m, n, s, t, h, e, i, o, p1, p2, w1, w2a, u; sephs2, selenophosphate synthetase 2; *srebp1c*, sterol regulatory element binding proteins 1c; *tbp*, TATA-box-binding protein; *tuba*, tubulin alpha chain; *txnrd*, thioredoxin reductase; *ubce*, ubiquitin-conjugating enzyme.

genes	6pgd	g6pd	fas	асса	dgat l	dgat2	gpat3	srebplc
grp78	0.658	0.587	0.748*	0.955**	0.776*	0.864**	0.895**	0.837**
crt	0.762*	0.226	0.918**	0.737*	0.468	0.395	0.655	0.839**
perk	0.61	0.585	0.734*	0.951**	0.796*	0.776*	0.804**	0.817**
eif2α	0.718*	0.599	0.878**	0.926**	0.690*	0.621	0.868**	0.931**
atf4	0.746*	0.513	0.790*	0.990**	0.886**	0.837**	0.787*	0.838**
ddit3	0.353	0.313	0.295	0.581	0.752*	0.442	0.141	0.248
irelα	0.21	0.317	0.364	0.5	0.382	0.487	0.672*	0.544
xbp1	0.734*	0.509	0.838**	0.962**	0.839**	0.690*	0.760*	0.871**
insigl	-0.887**	-0.239	-0.957**	829**	-0.61	-0.556	-0.837**	-0.943**
ip3r1	0.737*	-0.174	0.708*	0.443	0.302	0.071	0.416	0.702*
ip3r2	0.793*	0.213	0.503	0.536	0.745*	0.48	0.199	0.404
ip3r3	0.645	-0.065	0.606	0.343	0.214	0.162	0.504	0.675*
ryr2	0.685*	0.052	.766*	0.576	0.284	0.423	0.706*	0.748*

Supplemental Table 4 Correlation between the mRNA levels of ER stress genes and

ryr2 0.685* 0.052 .766* 0.576 0.284 0.423 0.706* 0.74 Value represents for Pearson correlation coefficient. * P < 0.05, ** P < 0.01. 6pgd, 6-phosphogluconate dehydrogenase; acca, acetyl-CoA carboxylase a; atf4, activating transcription factor 4; crt, calreticulin; ddit3, DNA damage inducible transcript 3, dgat, diacylgycerol acyltransferase; eif2a, eukaryotic initiation factor 2a; fas, fatty acid synthase; g6pd, glucose 6-phosphate dehydrogenase; gpat3, glycerol-3-phosphate acyltransferase 3; grp78, glucose-regulated protein 78; insig1, insulin-induced gene 1; ire1a, inositol-requiring enzyme 1a; ip3r, inositol 1,4,5-triphosphate receptor; perk, protein kinase R like endoplasmic reticulum kinase; ryr2, ryanodine receptor 2; srebp1c, sterol regulatory element binding proteins 1c.

lipogenic genes in the AI of yellow catfish fed diets varying in Se level for 12 wk

genes	6pgd	g6pd	fas	асса	dgat1	dgat2	gpat3	srebplc
grp78	0.309	-0.022	0.334	-0.767*	727*	871**	-0.497	-0.828**
crt	0.109	-0.103	0.184	-0.794*	-0.688*	-0.894**	-0.525	-0.709*
perk	-0.506	-0.583	0.852**	0.117	-0.417	-0.497	0.524	-0.516
eif2α	-0.38	-0.518	0.417	0.457	-0.116	0.038	0.471	0.07
atf4	-0.352	-0.219	0.177	0.837**	0.591	0.644	0.737*	0.481
ddit3	0.201	-0.009	-0.185	0.633	0.765*	0.780*	0.382	0.627
irela	0.202	0.322	0.296	0.015	0.185	-0.111	0.018	-0.057
xbp1	-0.009	0.265	-0.227	0.523	0.654	0.585	0.231	0.850**
insig1	0.597	0.469	-0.563	-0.64	-0.024	-0.199	-0.820**	0.037
ip3r1	-0.445	-0.599	0.903**	0.109	-0.41	-0.489	0.58	-0.504
ip3r2	-0.251	0.355	0.555	0.606	0.375	0.171	0.529	0.264
ip3r3	-0.032	-0.371	-0.481	0.252	-0.017	0.584	0.105	0.25
ryr2	-0.485	-0.493	0.843**	0.273	-0.233	-0.325	0.625	-0.399

Supplemental Table 5 Correlation between the mRNA levels of ER stress genes and

lipogenic genes in the MI of yellow catfish fed diets varying in Se level for 12 wk

Value represents for Pearson correlation coefficient. * P < 0.05, ** P < 0.01. 6pgd,

6-phosphogluconate dehydrogenase; $acc\alpha$, acetyl-CoA carboxylase α ; atf4, activating transcription factor 4; crt, calreticulin; ddit3, DNA damage inducible transcript 3, dgat, diacylgycerol acyltransferase; *eif2a*, eukaryotic initiation factor 2a; *fas*, fatty acid synthase; g6pd, glucose 6-phosphate dehydrogenase; gpat3, glycerol-3-phosphate acyltransferase 3; grp78, glucose-regulated protein 78; insig1, insulin-induced gene 1; *ire1a*, inositol-requiring enzyme 1a; *ip3r*, inositol 1,4,5-triphosphate receptor; *perk*, protein kinase R like endoplasmic reticulum kinase; ryr2, ryanodine receptor 2; srebp1c, sterol regulatory element binding proteins 1c.

Supplemental Figure 1 The relative mRNA levels of 22 selenoproteins (excluding six ER-resident selenoproteins) in the AI of yellow catfish fed diets varying in Se level for 12 wk (Expt. 1). AI, anterior intestine; *dio2*, deiodinase 2; *gpx*, glutathione peroxidase; *msrb1*, methionine sulfoxide reductase b1; *sbp2*, SECIS binding protein 2, *selenoh*, *e*, *i*, *o*, *p1*, *p2*, *w1*, *w2a*, *u*, selenoprotein f, k, m, n, s, t, h, e, i, o, p1, p2, w1, w2a, u; *sephs2*, selenophosphate synthetase 2; *txnrd*, thioredoxin reductase

Supplemental Figure 2 The relative mRNA levels of 22 selenoproteins (excluding six ER-resident selenoproteins) in the MI of yellow catfish fed diets varying in Se level for 12 wk (Expt. 1). *dio2*, deiodinase 2; *gpx*, glutathione peroxidase; MI, middle intestine; *msrb1*, methionine sulfoxide reductase b1; *sbp2*, SECIS binding protein 2, *selenoh, e, i, o, p1, p2, w1, w2a, u*, selenoprotein f, k, m, n, s, t, h, e, i, o, p1, p2, w1, w2a, u; *sephs2*, selenophosphate synthetase 2; *txnrd*, thioredoxin reductase.

Supplemental Figure 3 Anterior intestine (AI) GRP78 immunofluorescence (A) and protein expression (B) of yellow catfish fed diets varying in Se level for 12 wk. Values are means \pm SEMs, n = 3 (replicates of 3 fish). Labeled means without a common letter differ, P < 0.05 (1-factor ANOVA, Duncan post hoc test). DAPI, 4',6-diamidino-2-phenylindole; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GRP78, glucose regulated protein 78.

-2001 ACACAATACA CTAACTCCAT TACTAACATA AACAGGAGAA AACAAGATCC AAAAAAATTA CACCCCTTCC CTACTAACCC CTTTCCAAAT TAACAAAAAGA -1901 ACTTAACAAA TAAAGAATGA AAAACTGTTA ACAAATATTA ATTAACTTAC AACCAAAAGA AAAACTTCCT GTTGCAGAGA TATCAATTCC TACAACAGAA -1801 AGAATAACAA AATATCAAAC AAAGCTCAAT CAAAGTACAA TCACTAAAAA GTAAATACAA ACTTCTGGGA GAGATTTAAA AAGACTCCCA AAAACAGCTC -1701 ACTCTCTCAC ACAACCACAC CAGCACCCAC CCAACCACCC ACACCAAGC AGGACAATGC TGTTTAAATA AACTCTGCAT CCTCTCATTA TCCAAACAGA -1601 GCTGATGTTC AATCAGTGAT GTCAGATGGC AACCATTTTT CACTGAAAAA TTCATGAATC TATTCTACAA AAATAACCTT TGTACACTAA CAGTAACTGA -1501CACCCCAACA ATTGCCTTTA CACAGTTTAG GAAAACTTGT CATTCTGGTC TGTGATTTTC ACACCTAAAC TACAGATGCT TTTCTAGTTT CTCATGACTC -1401 CAGCAGTCTC CTGTCTAAAG ATCAGCTGCT GTGTTCGATC TGTGTGGATG TGCTCGCTGA TCCAGTCACC ACTCCATGTA GCCACAACCT CTGTAAGAGC -1301 TGCCTTACAC AGTGCTGGGA CAAGAGTCAA CACTGTCACT GTCCATTATG TAACCAGATA TCCAGAAAGA GACCTAAACT GAAGATTAAT ACAACACAGA -1201PPARG 2 GAAAGATTGC AGATTACTTC AAGAAGAAAA GTGGTTCTGA CAAACCTGAG GTTCTTTGTG ATGCCTGCAG TGGAGAGAAG CTGCAGGCCC TGAAATCCTG -1101 TCTGGATTGT TGTGCTAGTT TGTGTAAAAC TCATTAGTCT TTCATAATAA TATGCCCAAA CTTAAGAAAC ACAAGCTAAT AAACACTGTG GAGAACCTGG -1001 TGGCCAACAT ATGCCAGAAA CATGAGAGAG TTCAGGACCG ACTAGATAAA AGCGATCAAA CACTCAGTAG AACAAAGCAA AGTGTGTACA AACATGACGT -901 GAGTTAATAT CTGATACATT TAGTACTTTT ATTTTTATTT GTAGAACAAA TTTGTAGAAC AACATCTG**TA GGAACAAAGT TCA**CTATCAG TGTTATCTTA -801 PPARG 1 TGGAAGTGAA AACGTTTTCC TCCTTTAGAG AAGCACAAAG AAAGAAGAAAG CAGACAGTGC TGAAGTCTTC GCTCCATTGA GAGAAGTCAG GCTGAGCTGC -701 CGGAGATGAT GGAGGAGAAG CAGAAAGCAG CAGAAGGAAA GGCTGAAGGA CTCATTAAAG AGCTGGACCA GAAAATCAGT GTGCTAAAGA GGAGCGTGGA -601 CACTGACGAC AGCTCTGTCT CAGCTCAGCA GACTCTGCAT GAGAAACTCA CTAAAATCACC CAATGACAAT TTAAAGGAAA CAGGTGATAA ATTATTTTGT -501 SREBP1c ACTTTAGATT TGATAAAAAA AAAGTCTCTA ATGATAGACT AAGGTAGATG TTTTAAGTAT ATATTTTGCA AAATCTAAAT ATTAAATACC AATAATTGAT -401 CTGARATCTA ATGACAGTGA TGTTTTGTTG TARTTAGTTT CCACAGARCT GARGAGGATT CAGCAGARATG CAGGTACACT GAGCTTTATG ATTTCCTCTC -301 -201 SREBP1c 1 TCACCATCAT CATCACACTT AAAATGCCTT ACAGAAAACA GAATGTTGGC TTCTACAAAA CCACCATAAT AATTGCCCCG CCCCTTTTAG AAGCACCGCA -101 -1

Supplemental Figure 4 Nucleotide sequence of yellow catfish selenos promoter. The

highlighted sequences indicate the binding sites of putative transcription factors.

TTCAATCTAA GTACTGGAAC AGAATAAATC AGCACCCCCA GCTCTAGACA AATATGGGTA TGTCTTTTTA TTGTACTGAA CGCATAGGTT TGTTCTATGA -2001GTTTGACATA TAAAAATAAA TGCTGAAAAA TAACTAAGAC GTTATATGAT AGCAGAGTAC CCTATTTAAA ATCCTCAAGCA CCATGTCTCC -1901 CTCTAGAGGA CAAGTTTATG AAGCAATTGA ATCAAAAAAGC ATACTGTATA TTTTCTAGTC GACAAAGACC AAATAATTTA ATGCCTTTTA GTAAAAAATG -1801 TTTTCTGTCG CAAAAGAGTC GAGTCCTTGA GTCGATTCTC CCTAGGTGAC CCTTATGAAT CCAACTATAT AATTTTTACA CTGATGGCCT GTCATTTTTG -1701 TGCTTAAGTG AATTAGTAGT ATTAATTTAA ACTTTTAATT TTTTAGCATT GATAAAAACA AAATTCCTTC ATTTCTGAAA TCTTAGTAAC GGTTTCAAAT -1601 TCTTTAGAAT GTAAGAGATA AAGGACATTT ATTCACGAAT TGATCTTTCT ATTTGCATTT GGAGAAACCA GGTGTGACAC CGAAATCTGT GACCTATCGT -1501 ATGTTGTGAC CTTAGAGTGC GCTGTTGCTA AAATGCAGCT TAAAATAGGT CGTCTAGAGA CGTTCGCTAC GTAAACAGAG TAAATGCAAA ATCTTGCGTA -1401 AATCTTGTTG CGAGAACGCG CCAAGCGCCG TGAACGTTAC ATTCAACGCG CGTGCCGTCG TGCTGCAAAG AAACAGTTGC ATGCGCATTG AACTAAAGAC -1301 TCATTTACAG TACTTAAAAA AACAAAGCTA TTCAAATGCT TTTGCATTCT GTTTTCTTGA TTGCTTTTT TTAACTACCT TGAAAGTCAT TTATTAATTA -1201 ACTTACAGCA CGGTCACAAA ATATGATAAG GCATTACAGG TTATCAGAAT CCGTTACCTC CCTCTATTTC ACACCAAATT GAATTGAATG TTCTCCATAT -1001 TCCTGAAAAG GATTTGGGTC TCATGTCAAC AGAAACAAAC TTACAGATAG AATAGAGGAA GGTAACGGAT CCTGATAACC TGTAATGCCT TATCATATTT -901 GGTGACCGTG CTGTAAGTTT GTTTCTGTTG ACATGAGACC CAAATCCTTT TCAGGATATA CTATAGAGGG TGTTAGGCAT CACCAGAGTG AATATGGAGA -801 ACATTCAATT CAATTCGGTG TGAAATAGAG GGAGGTAACG GATTCTGATA ACCTGTAATG CCTTATCATA TTTTGTGACC GTGCTGTAAG TTTGTTTAAT -701 TAGCCTTAAT TAATAAATGA CTTTCAGGGT AGTTAAAAAA AGCAATCAAG AAAACAGAAT GCAAAAGCAT TTGAATAGCT TTGTTTTTTT AAGTACTGTA -501 AATGAGTCTT TAGTTCAATG CGCATGCAAC TGTTTCTTTG CAGCACGACG GCACGGCGCT TGAATGTAAC GTTCACGGCG CTTGGCGCGCT TCTCGCAACA -401 AGATTTACGC AAGATTTTGC ATTTACTCTG TTACGTAGCG AACGTCTCTA GACGACCTAT TTTAAGCTGC ATTTTAGCCA CAGCGCCCTC TAAGGTCACA -301 ACATACGATA GGTCACAGAT TTCGGTGTCA CACCAGCAAT GAGCCATTTG AGAATTGGAA GAGTCGACTC TTATTGTTCA GCTGAAAAAT TCTCATCACT -201 SREBP1c AGCCTGTCGC AGAGATCGAC TGCGCATGCG AGTAATCATC CAATAAGCTT CTAGATCTGA AATTACTCTT GCCTGGTTCC TCCTCCTTAA AGAGGAACTC -101 G -1

Supplemental Figure 5 Nucleotide sequence of yellow catfish selenom promoter.

The highlighted sequences indicate the binding sites of putative transcription factors.

TAAAAGACGG	TGAGTCTCTT	ATTGACATTA	ATATTAACTG	ACCGCCCAGA	AGCCCTGCTC	ACTTTTCTTG	ATGTAGCTTA	GATTCTTTCC	ACTCTCCAAA	-2001
CAGAGATCCA	ACGTAGTCCC	CGAGCCGTTC	GATTCGACCG	CACTATAAAG	TGAAAAACAC	TCGATCAATG	ATGGATTGTC	AACCTGCCAA	CACACACCAC	-1901
TGCTATTAAT	ATTGGAGAGG	CTTCTCTTTT	GATTTGGATT	CGCAGGTTGA	AGCAGCTGAG	AGAGGAGCCG	TACACTCAGG	CTGAGGCGGA	GCGAGCGGCA	-1801
GGGATGGGCT	CGTACGTCCC	тсстаааааа	GTCGAGGTGC	ACACACAGCA	GGTGGAGGAG	GACATGGAGT	GAACGCTGTA	CGTCATCTCG	ACACTACTGT	-1701
AGCCTGAAGA	TCACTTTCAA	GCACAGTGTC	TCACCCTCCG	AGTACTCGCA	CCTACAAATA	TTAGCCCCCG	ACGTGTCCGA	GTTTCCTTGG	ATGCCTTTTC	-1601
CCTGAC GTTC	ACAGGCCTCG	GGTCCTCAGA	AGGTTTACAC	ACAAACGTGT	ATTCAGGATC	CAGATAATTA	ACCTCTTGAA	TTAAAACCGT	GCGTTTTATT	-1501
CCTTTTATTT	GTGTTGAAGC	ACTACAGGGG	GTTTGATCAG	GTGTCTGATA	GTGATGAAAT	GCCTGAGTTG	TGTAGTGTGA	T GATGATGAT	AAGTTACCTG	-1401
TCAATCAAAT	CCCACAGTAA	CACACTGATG	TGTGTTGGTT	TATTGTGTGT	TAGGATTTGA	CTGGACTGTG	ACCACATATG	GCTTCATGTG	TAAATTCATA	-1301
TGTAAATAAA	TTGTGAAATC	AGAATGTTGT	GCACATGCAG	TTCTGTAAAA	GTGTGTGTGT	GTGAGAGAGA	GAGAGAGAAG	AGAGAGTGTG	TGTGTGTGTG	-1201
TGAGTGAGAG	AGAGAGTGTG	TGTGTGAGAG	AGAGAGAGAG	AGTGTGTGTG	TGTGTGCGGC	CGGCCCCGAG	AGATAGTGTG	GGGAGCGAGA	GAGTGCCTGT	-1101
GTGAGGCGAC	CCGATGTGTG	GTGTTTAGGC	GAGAGCTGTG	GCGAGAGCCC	GTGTGTGTGT	TGTGCCCTCG	CCGTGCGTTG	TGTGTAGAGT	GAGAGAGCCA	-1001
GTGTGTGGGT	GTGTGTGTGA	GTGTGCAGAA	GTGCGTGTGA	GCGCGCTGTG	TGTGGTGCGT	GCGCTTCTCG	ACGTGCGTGT	GGAGCGAGAG	AGTGTGTGTG	-901
TGTGAGAGAG	AGAGAGAGAG	AGAGTGTGTC	GTTCCTTTGA	GAGAGAGTGT	GTGTGTTGTG	TGTGTGCGTG	TGTGAGAGAG	AGTGAGTGTG	TGTGCGTGTG	-801
TGTGAGAGAG	AGTGTGTGTG	AGAGTGTGTG	TGTGTGTGTG	TGTGTGTGTG	TGCTCTCTTT	TCCCTACATT	ААТААААССА	GCTGTATTAA	AACTAAGACT	-701
GTTAACTAGA	CGTGTCTCTG	GTGATCAAAT	ACATTTTAAT	GAAGTGTAAA	AATGCACATT	AAGTACGTGT	CTAAGATTAG	CCTTAAATTG	TAGGTTTAAT	-601
TAAAACCCCT	AATGGAGCAA	CAAAAACTCC	CTTTTTATGT	AGTCATGAAT	ATACAGTAAA	CAAACAGTCT	AATTCTAACA	CCACATGTTT	GTTCACTTTG	-501
CTTTATTGTG	TTTAACTTTA	CTGTTTGTTT	TATTGGACTC	AGTTTATTTT	ATTCATAGAA	ACGTGCAAAA	GTGCTTTTTA	ACACTCTGAG	TGAATATGAA	-401
TCTTACTGAA	TCGAAGAGTT	GAATCGGGAG	CCGAGTCATG	CGATGAAGAA	AATAAAGCAT	TTTGGAAAAC	TTTTATATAT	CAGTGCACTA	AGAATAATCT	-301
GCTGTTGTCC	TTTGAGGTAA	ААААААААА	TTATCGAAAC	ACGATTTTTC	GTGTAGACGT	GCTTATATTA	GCACAACAAC	AACCCGGTTA	TTGAATGAAT	-201
CAGTGAGTCG	AATCTTTTTG	GATGATTCGA	AATTAATACC	GTTATTTTAA	тттаааатаа	AAAAAAGGT	GTACTGTGGC	TTTAAGAGTG	AAACCTTTCC	-101
т										-1

Supplemental Figure 6 Nucleotide sequence of yellow catfish selenon promoter. The

highlighted sequences indicate the binding sites of putative transcription factors.