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Table S1: Pairwise comparisons of the abundance of ciprofloxacin persister cells in the 
evolved clones sampled from each of the 12 LTEE populations at 50,000 generations. 

These comparisons are based on the coefficients of the model in Table 1. The ln(FC) values give the 
logarithm of the fold change of the abundance of persister cells. This fold change is defined as the 
abundance in the clone in the row over the abundance in the clone in the column. In non-empty cells, 
persistence is significantly higher in the clone in the row than in the clone in the column. The 
significance of this fold change was assessed with the R package multcomp. For readability, the clones 
sampled from populations Ara‒1 and Ara+1 were removed because they do not significantly differ 
from any other clones, and only significant results are shown. For the full results, see tables S2 and S3. 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

Ara -2L -2S -3 -4 -5 -6 +2 +3 +4 +5 +6 
-2L  ln(FC) =  5.81 

p < 0.001 *** 
 ln(FC) =  5.58 

p = 0.016 * 
  ln(FC) =  5.51 

p = 0.013 * 
    

-2S            
-3            
-4            
-5            
-6            
+2            
+3            
+4  ln(FC) =  9.57 

p < 0.001 *** 
ln(FC) =  6.76 ; 
p < 0.001 *** 

ln(FC) =  9.34 
p < 0.001 *** 

ln(FC) =  6.23 
p = 0.009 ** 

ln(FC) =  7.83 
p < 0.001 *** 

ln(FC) =  9.27 
p < 0.001 *** 

ln(FC) =  6.39 
p = 0.002 ** 

   

+5  ln(FC) =  6.6 
p = 0.001 ** 

 ln(FC) =  6.37 
p = 0.036 * 

  ln(FC) =  6.29 
p = 0.034 * 

    

+6  ln(FC) =  5.71 
p < 0.001 *** 

 ln(FC) =  5.48 
p = 0.03 * 

  ln(FC) =  5.4 
p = 0.028 * 

    



3 
 

 

Figure S1: Effect of antibiotics on growth rates. 
Each combination of letter and color corresponds to one clone. 
Lines link each individual clone in each treatment. 
In the boxplots: the central line give the median, the extremities the first and third quartiles, and the 
vertical bars the minimal and maximal values. 

 

Supplementary method 1: Heuristic selection of the exponential growth phase 
We detected the exponential growth phase in two steps that were implemented by the R 
function we developed: “SimpleExponentialGrowthFit” (file SimpleExponentialGrowthFit.R). 
The rationale is similar to the approach implemented by the R function ‘fit_easylinear’ (details 
and comparison below). 

In the first step, we identified the part of the growth curve with the highest exponential link 
between OD600 and time by using a sliding window approach. While ‘fit_easylinear’ implicitly 
assumes that the background was removed by the user, our function estimates the background 
separately for each growth curve. This is important since the background varied a lot within 
the same plate (Figure S2). 
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Figure S2: Variability in background OD for the wells of a representative microplate. 

To consider the entire exponential growth phase, the second step aimed at extending the span 
of the window with the highest exponential link between OD600 and time that was detected 
during the first step. 

We detected and fitted exponential growth for each growth curve as follow. 

Step 1: identifying the window with the highest exponential link between OD600 and time. 

For each sliding window of 10 time points (2.5h) we fitted and scored the linear model  𝑙𝑜𝑔ଶ(𝑂𝐷 − 𝐵𝑔)௜ = 𝐺𝑟𝑜𝑤𝑡ℎ𝑅𝑎𝑡𝑒 × 𝑡𝑖𝑚𝑒௜ + 𝑂𝐷௜௡௜௧ + 𝜀௜, where: 

• 𝐵𝑔 is the background OD that is specific to the sliding window. It is estimated as the 
median OD in the first ¾ of the dots before the start of the current sliding window (e.g., 
in Figure S3). 

• 𝑡𝑖𝑚𝑒௜ is the explanatory variable. 
• 𝐺𝑟𝑜𝑤𝑡ℎ𝑅𝑎𝑡𝑒 is the slope associated with this variable: the time needed for 𝑂𝐷 − 𝐵𝑔 to 

be multiplied by two is 1/𝐺𝑟𝑜𝑤𝑡ℎ𝑅𝑎𝑡𝑒.  
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To see this, define two time points 𝑎 and 𝑏, such as 𝑂𝐷௕ − 𝐵𝑔 = 2 × 𝑂𝐷௔ − 𝐵𝑔 ⇔  𝑙𝑜𝑔ଶ(𝑂𝐷௕ − 𝐵𝑔) = 𝑙𝑜𝑔ଶ(2) + 𝑙𝑜𝑔ଶ(𝑂𝐷௔ − 𝐵𝑔) = 1 + 𝑙𝑜𝑔ଶ(𝑂𝐷௔ − 𝐵𝑔). 
This equation can be rewritten with the right side of the model:  𝐺𝑟𝑜𝑤𝑡ℎ𝑅𝑎𝑡𝑒 × 𝑡𝑖𝑚𝑒௕ + 𝑂𝐷௜௡௜௧ = 1 + 𝐺𝑟𝑜𝑤𝑡ℎ𝑅𝑎𝑡𝑒 × 𝑡𝑖𝑚𝑒௔ + 𝑂𝐷௜௡௜௧ ⇔ 𝐺𝑟𝑜𝑤𝑡ℎ𝑅𝑎𝑡𝑒 × (𝑡𝑖𝑚𝑒௕ − 𝑡𝑖𝑚𝑒௔) = 1 ⇔ 𝑡𝑖𝑚𝑒௕ − 𝑡𝑖𝑚𝑒௔ = 1/𝐺𝑟𝑜𝑤𝑡ℎ𝑅𝑎𝑡𝑒. 

• 𝑂𝐷௜௡௜௧ is the intercept that corresponds to the initial OD. Indeed, at 𝑡𝑖𝑚𝑒ଵ = 0, we 
have 𝑂𝐷଴ − 𝐵𝑔 = 2ை஽೔೙೔೟. In the absence of lag phase, this value would correspond to 𝑎 × 𝑁଴ where 𝑁଴ is the initial number of cells, and 𝑎 describes the relationship between 𝑂𝐷 and 𝑁: 𝑂𝐷 − 𝐵𝑔 = 𝑎 × 𝑁. However, since a lag phase is present in most cases, 2ை஽೔೙೔೟ is positively associated with 𝑁଴ and negatively to the lag phase. 

 

Figure S3: Illustration of the detection of the exponential phase in the growth curve. 

We scored the model of each sliding window with the formula: 𝐺𝑟𝑜𝑤𝑡ℎ𝑅𝑎𝑡𝑒 × 𝑙𝑛(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑂𝐷 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑐𝑖𝑑𝑒𝑟𝑒𝑑 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤 + 1) × 𝑅² 
and selected the sliding window with the highest score. 

In this formula, the 𝑙𝑛 of the OD standard deviation avoids the window being selected earlier 
than the exponential growth, i.e., during the lag phase, when growth revealed to be noisy. 

Step 2: extending the span of the window. 

We extended the window span for it to include the entire exponential phase. We chose the 
span of the window that maximized −𝑙𝑜𝑔൫ห𝑂𝐷෢ − 𝑂𝐷ห൯തതതതതതതതതതതതതതതതതതതതത × 𝑅² where 𝑂𝐷෢  is the predicted OD by 
extrapolating to the entire growth curve the model adjusted to the selected window. The use 
of the log of the absolute value of the error allowed to set a low weight to large errors that 
corresponded to the growth period outside the exponential growth phase. 


