
Supplementary Material: 
Antigen characterisation by sodium dodecyl sulphate denaturant polyacrylamide gel electrophoresis (SDS-

PAGE): 
 
Each lot of antigen (rRBD) was characterised prior to formulation. Antigen quality was assessed by SDS-PAGE 

under reducing and non-reducing conditions in 12,5 % p/v acrylamide and colloidal Coomassie brilliant blue stained. 
In the following figure an image of a representative rRBD lot (rRBD lot 0806) quality assessment is shown: 

 
Figure S1: SDS-PAGE characterisation of a representative rRBD lot. SDS-PAGE resolution profiles of a sample of 

rRBD lot 0806 under reducing (lane 1) and non-reducing (lane 2) conditions. The gels were stained with colloidal 
Coomassie G250 Brilliant Blue using the standard methods, the images were digitalized with an office-scanner and 
analysed using ImageJ software (Version 1.51). Molecular weight references (in kDa) are indicated to the left of the 
image.  

Statistical Modelling of Specific Anti-RBD IgG Response: 
In this work anti-RBD IgG response evolution during hyperimmunization schedules was registered in terms of 

OD450nm data from indirect ELISA experiments performed on sera samples collected at different time intervals. It is thus 
implicit the OD450nm is expected to vary during the course of the experiment as a function of time. We could then try to 
formalize this relationship in terms of a longitudinal model where the response (OD450nm) is assumed to vary according 
to a single covariate (time), following a previously defined function characterized by a set of parameters that are to be 
estimated based on maximum-likelihood criteria. Sources of random variation that can’t be explained by this model 
(such as measurement inaccuracy) are included in an error term. Data modelling not only allows to extract statistical 
inference for hypothesis contrasts but its parameters also reflect relevant information about the general hypothesis (as 
will be shown later).  

The data for each group of 24 horses (I and R groups) was analysed separately, beginning by visual inspection of 
experimental OD450nm vs time graphical representation (Figure S1):  
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Figure S2: Representation of experimental anti-RBD specific IgG response during the immunization (panel A) and 
reimmunization (panel B) periods. The data obtained from sera of each different horse are represented with different 
colours. 

It is clear from Figure S1 that the OD450nm doesn’t follow a linear tendency in time during any of the immunization 
schedules. Thus, nonlinear models were considered for modelling these data. In our initial approach, we constructed 
population-averaged models for both groups. These models consider these 24 horses as a randomly selected 
representative sample from a much larger population of horses and thus are intended to address questions that focus 
on the expected behaviour of the overall population. Although the number of individuals should be considered too 
small as to allow to extrapolate valid conclusions to the overall population, the population-averaged model are useful 
tools for an initial assessment of adequate functional models for posterior development of individual-specific models.  

Let f (φ, t) be a function that models the dependency of the specific anti-RBD IgG response, (estimated through 
OD450nm), in time, with its associated parameters described in the vector φ:  

OD450nm ij= f (φ, tij ) + ε ij 
where the residuals between the registered OD450nm for each individual horse i= 1,…, 24 at each time j=0,…, k 

days are assumed to have an independent, homoscedastic, normal random distribution modelled through the within-
error matrix ε ij ∼ N (0, σ2). According with visual inspection of Figure S1, it was considered that while a four-parameter 
logistic model was adequate to model the experimental data from the I period, and simpler three-parameter logistic 
model was able to model the data from the R period (Table S1). 

Table S1: Statistical population-based model formulae for data from each immunization period 
Period Model formula Parameters 
Immunization OD450nm ~ f (φ tij ) = φ2 + φ1 / (1 + exp 

[(φ3-tij)/ φ4] 
φ1 = <ODmax>, horizontal asymptote t → 

+∞ 
φ2 = (<ODmin>), horizontal asymptote t 

→ -∞ 
φ3 = <OD50>, inflection point 
φ4 = <scale>, scale parameter of the model. 

Reimmunization OD450nm ~f (φ tij ) = φ1 / (1 + exp [(φ2-
tij)/ φ3] 

φ1 = <ODmax>, horizontal asymptote t → 
+∞ 

φ2 = <OD50>, inflection point 
φ3 = <scale>, scale parameter of the model 

 
Then, model fitting was performed by nonlinear (weighted) least squares estimation of the models parameters 

using the nls function of the nlme package from the open source statistical software R (Pinheiro and Bates, 2000). Results 
are represented in Figure S2 and the estimated parameters are described in Table S2: 

 
 
 



A 

 

B 

 
 

Figure S3: Nonlinear modelling of the average population dependency between OD450nm and time for data from 
the immunization (panel A) and reimmunization (panel B) periods. The experimental data is represented by dots and 
the fitted model by a line. 

Table S2: Fitting results of nonlinear least square estimation of model parameters 
 Nonlinear model 
Parameter [CI α=0.95] Immunization Reimmunization 
<ODmax> 0.67 OD unit [0.62 - 0.72]  0.89 OD unit [0.75 – 1.02] 
<OD50> 19.1 day [17.1 – 21.1] 6.8 day [4.2 – 9.4] 
<scale> 1.63 day [0.19 – 3.1] 4.0 day [1.7 – 6.3] 
<ODmin> 0.004 OD unit [-0.07 – 

0.08] 
- 

Within error (σ) 0.186 OD unit 0.316 OD unit 
 
As already mentioned, a relevant aspect from nonlinear model fitting of experimental data is that it allows to extract 

conclusions from the estimated parameters of the model. In this case the <ODmax>, an estimation of the asymptotic or 
maximal OD450nm value that is estimated to be reached at long time values, suggests that higher maximal OD450nm values 
are expected during the R period when compared to the I period (0.89 vs 0.67, respectively). Moreover, <OD50>, the 
estimated time elapsed until the OD450nm reaches half-maximal levels, indicates that the immune response increases 
significantly faster during the R period when compared to the I period (19 days vs 7 days, respectively). 

Noteworthy, these preliminary models do not take into account individual horses’ contribution to variability, they 
are restricted to a population-averaged description. In this sense, as the residual plots in Figure S3 suggest, the within-
error terms in both models are strongly influenced by systematic variability in individual horses’ response to RBD 
immunization: 
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Figure S4: Standardized residuals plots for fitted nonlinear models for horses from the I and R periods (panel A 
and B, respectively). Mean values are represented as solid dots and standard error and confidence intervals are 
represented as boxes and whiskers, respectively. 

A completely opposite approach for statistical modelling of experimental data would be to fit single nonlinear 
models for each individual horse from I and R groups. Nevertheless, since a full set of parameters must be fitted for 
each horse, this stresses the requisite for experimental data to follow the functional dependency of the model, thus 
limiting the possibilities of success during parameter estimation. Also, the extractable information from the parameters 
of this type of models is restricted to each horse, i.e., the individually fitted parameters are only valid for each and every 
horse and they do not represent general overall horses’ response to RBD immunization. The model now takes the form: 

OD ij= f (φi, tij ) + ε ij 
Here, the functional part of the models are expressed similarly as in the population-averaged models constructed 

before, but in this case there is a φ parameters vector for each i horse belonging to R and I groups of data. Individual 
nonlinear models were then fitted using the nlsList function from the nlme package from R software.  

Individual nonlinear models could be fitted for the IgG anti-RBD specific immune response of 16 and 18 horses of 
the I and R groups, respectively. The estimated parameters in these individual models, represented in Figure S4, allow 
to drive relevant conclusions, as will be later described. 
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Figure S5: Estimated parameters of individual nonlinear models for the IgG anti-RBD specific immune response 
in sera of horses from I and R periods (panel A and B, respectively). Estimated values for each individual horse are 
represented with their corresponding confidence intervals. 

As Figure S4 suggests, most parameters of nonlinear models for I and R groups overlap, with the exception of 
<ODmax>. This is indeed a relevant aspect of fitting single nonlinear models; these models show clues about how to 
model the random effects structure for nonlinear mixed-effects model building. We could thus build nonlinear mixed-
effects models from the experimental data of each group of horses (I and R), where the dependency of OD450 with the 
covariate time follow the same functional dependency as in the latter models (three or four parameter logistic models 
for R and I group, respectively): 

OD ij= f (φij, tij ) + ε ij 
Where f (φij, tij ) for I and R groups share the same structure as described in table S1. But opposite to the initial 

population-averaged models in these subject-specific models, the parameters have an additive structure composed of 
two parts: 

φij = Aij βi + Bij bi   , ε ij ∼ N (0, σ2)., bi ∼ N (0, ψ2). 
The first term in the formula models the information common to all the individuals in each group through the 

vector of fixed effects βi. The second term models the differences observed among individuals through the random 
independent normally distributed effects bi.  Figure S4 suggests that mixed effects-models could be constructed for both 
group of horses in which the only parameter that should include random effects to account for differences among 
individuals is <ODmax>. The nlme package of statistical software R allows to estimate nonlinear mixed models, where 
the required initial estimates for the parameters can be extracted from the individual nonlinear models developed 
before. The estimated parameters after model fitting are shown in Table S3: 

Table S3: Fitting results of nonlinear least square estimation of nonlinear mixed-effects models parameters 
  Nonlinear model 
 Parameter  Immunization Reimmunization 

Fixed-
effects 

<ODmax> 0.67 OD unit [0.58-0.76] 0.87 OD unit [0.72-1.03] 
<OD50> 18.7 day [17.8-19.6] 7.0 day [5.4-8.6] 
<scale> 1.68 day [1.16-2.21] 2.8 day [2.2-3.4] 
<ODmin> -0.003 OD unit [-0.04-

0.03] 
- 

Random-
effects 

Within-error 
(σ) 

0.09 OD unit [0.08-0.10] 0.12 OD unit [0.1-0.15] 

SD<ODmax> | 
Horse 

0.22 OD unit [0.16-0.29] 0.37 OD unit [0.27-0.5] 

SD<OD50> | 
Horse 

- 3.23 day [0.2-4.8] 

 



The estimated fixed-effects of the parameters in these models closely resemble the estimated parameters from the 
initial population-averaged models. Again, higher <ODmax> are reached at shorter times (<OD50>) in the R group. 
Nevertheless, from a mathematical point of view it should be mentioned that although this part of the model represent 
the contribution of all the animals on each group, the nonlinear nature of model implies that the overall population 
mean of nonlinear mixed models is not identical to the initial population-averaged models. 

The contribution from among-animals sources of variation is modeled through the random effects bi and the 
within-animals sources of variation is modeled through σ. As Table S3 shows, the estimated within-error is similar for 
both groups and significantly lower than estimated for population-averaged models. When the most important source 
of among-individuals variation from both groups, SD<ODmax> is normalized to its respective fixed effect 
(SD<ODmax>/<ODmax>) it can be concluded that among-individuals variation seems to be higher for the R group when 
compared to the I group (0.43 vs 0.33, respectively).  

Finally, the contribution of individual-specific models (the final mixed-effects models) to account for among-
animals sources of variation is clearly seen when residual plots for the fitted models (Figure S5) are compared to those 
of population averaged models (Figure S3). 
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Figure S6: Residuals plot analysis of nonlinear models. Estimated residuals for each model were plot as crude raw 

values (displaying their median and standard errors, left panels) or as standardized values, against their fitted values 
(right panels). 

Thus, a clear homogenizing effect for residuals variability (residuals = experimental OD450nm minus fitted OD450nm) 
between horses is observed through the introduction of mixed-models. NLME models are thus in closer agreement with 
assumptions made on within-error independency and homoscedasticity. Moreover, the closer fitting of NLME to 
experimental data for each individual horse is clearly shown in Figure S5: 
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Figure S7: Mixed-effects model fitting to experimental data. Nlme models (red lines) are represented together with 

experimental data (black circles) for the I group (left panel) and R group (right panel).  

Thus, as Figure S6 suggests, nonlinear mixed-effects models could adequately fit the experimental data obtained 
during RBD immunization. The differences in the estimated parameters for these models suggest that significantly 
higher final levels of immunization are obtained in shorter times during reimmunization. The random-effects 
components in these models, by accounting for among-individuals differences between horses inside each group, also 
suggest that for horses of both I and R groups the major source of variation between individuals is the maximal levels 
of specific IgG anti-RBD immune response achievable in horses’ sera.  

 
 


