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1 Introduction

The present document contains the supplementary materials for the article titled Effects of Cap-

tivity on Carnivore Mastication; Implications in Ecological Studies of both Past and

Present. Here we list the analytical procedures employed for the analysis of the variable “Opening

Angle” (OA), including the mathematical equations used to define concepts within the text of our

paper.

The original definition of this variable in the metric study of taphonomic traces was proposed by

Silvia Bello and Christophe Soligo [1], calculated via the angle between the slope S1 and S2, thus

defining the Opening Angle (OA), or δ (Fig. S1.1). These values are reported in degrees (◦), and

have typically been processed using traditional univariate statistical methods [1], or in combination

with other metric variables via Principal Components Analyses and other multivariate approaches

[2, 3]. In recent years, however, studies have noted on a number of occasions how the variable OA has

often held a unique weight on statistical tests [4, 5], in some cases producing noise. Few attempts,

however, have been made to try and understand this statistical noise and evaluate the most efficient

means of integrating this data. The present supplementary file presents an update to the already

present analytical procedures in order to improve the processing of such data.

2 Problem Presentation

Circular data, in comparison with linear data, can be described to have a number of differential

components. For simplicity the present document will note 3 of these; location of the origin, differ-

ences in calculation of mean, and finally the distortion produced by combining these factors when

projected onto a measurable scale.

• The origin of a linear scale is simply defined as 0. Under this premise any value to the left of 0

are noted as negative values, while values to the right are positive. Considering this, the value
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Supplementary Figure S1. 1: Obtaining measurements of opening angle for taphonomic traces.
Left: 3D elevation model in Cloud Compare. Right: cross section of the mark under staudy, the

landmarks used to derive measurements for OA and the definition of δ by [1] and [5].

355 is considered to be close to 360, yet far away from 0. When considering angles measured

in degrees, however, this is not always the case. On a circular scale, the value 360◦ is often

synonymous with the value 0◦, therefore (1) values to the left of 0 do not necessarily have to

be negative values, while (2) 355◦ is just as close to 0◦ as it is 360◦. Furthermore, in many

practical cases the measurement 370◦ is not possible while the linear value 370 is completely

plausible.

• Linear means and circular means vary, and in some cases greatly. Consider the values 5, 10,

350 and 355. The arithmetic mean of these 4 values is defined as (eq. 1):

x̄ =
1

n

n∑
i=1

xi (1)

However, if we were to consider these values as directions 5◦, 10◦, 350◦ and 355◦, the arithmetic

mean calculated via this formula (eq. 2) consequently equates to 180◦.

∴
350 + 355 + 5 + 10

4
= 180 (2)

This value evidently points in the complete opposite direction and therefore is not a valid

representation of these numbers (Fig. S1.2).

• Taking into consideration the aforementioned points, the projection of circular data onto a

linear plane can consequently result in large amounts of distortion. The easiest means of

explaining this concept is to consider coordinate projections in geodesy (Fig. S1.3). Depending

on our choice of projection, measurements can vary greatly, and in many cases traditional

calculations for euclidean distances and arithmetic means cease to remain reliable. Under

this premise the majority of statistical tests loose credibility, as null-hypotheses in parametric

statistics are often derived from distribution means.

Upon evaluating these three components, the authors believe care must be taken when defining

the variable OA and its underlying properties. Traditional statistical tests, therefore, can be con-

3



Supplementary Figure S1. 2: Example of the circular (black) and linear (red) mean for values
5, 10, 350 and 355.

sidered ineffective when processing this information, while the variable’s redefinition is fundamental

before it can be successfully integrated into future multivariate statistical analyses.

3 Definitions for Circular Data

Considering the trigonometric properties of circular data, traditional statistics usually used on typical

linear data are likely to create distortion when applied to angles. This thus requires a more specified

branch of statistics in order to extract precise empirical inferences about the dataset. Here we will

use the term circular statistics to make reference to such analyses.

The first condition to consider when processing circular data for angles are the units; degrees

(x◦) or radians (rad or xc). The measurements performed in the present study were all extracted

and measured in degrees. Nevertheless, for ease of mathematical processing, these values have all

been converted into radians (eq. 3). All values reported in tables within the main manuscript have

been converted back to degrees (eq. 4). The basic conversion from degrees to radians can simply be

considered as:

xc = x◦
π

180
(3)

x◦ = xc
180

π
(4)

Likewise, angles can also be represented in accordance with their position to the origin, with pos-

itive values usually indicating angles measured in a clockwise direction from the source. Regardless

of the units, however, a simple angle is typically represented in literature by θ, while the present

study will make use of only absolute values, or |θ| 1.

1Please note that authors Bello and Soligo originally defined this variable using the symbol δ. In continuation this
document will refer to δ as θ, as is most common in geometric literature
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Supplementary Figure S1. 3: Examples of distortion induced by linear projections of circular
data. Top panel: World Geodetic System 1984 Projection (Map created using base R plot functions

and the rgdal library). Bottom left: Goode Homolosine Projection (Map created using the
d3-geo-projection Javascript library). Bottom Right: Lambert Azimuthal Equal-Area Projection

(Map created using base R plot functions and the rgdal library).

Representations of angles in general can be defined as unit vectors, ~v, describing a point directed

from the center of a circle to its corresponding position on the circle itself (Fig. S1.4a). This

information, as with any vector in linear algebra, is represented by both magnitude and direction.

In the case of a single observation, we can define the point z in Figure S1.4 as an observation ≈ 150◦

or ≈ 2.6c clockwise from the origin (0). ~v thus defines the direction from the center of the circle to

point z.

The position of this point can be additionally projected onto a planar coordinate system (Fig.

S1.4b), using the trigonometric function (eq. 5):

(x, y) = (~v cosθ,~v sinθ) (5)

Considering, however, that the objective of our study is to understand the location of a set of

observations, the magnitude of the vector (~v) can be equated to 1, thus simplifying our formula to

the following equation (eq. 6):

(x, y) = (cosθ, sinθ) (6)

3.1 Calculating Central Tendency

When working with a set of observations of length n, vectors ~x1, ..., ~xn consisting of angles θ1, ..., θn

and complex numbers z1, ..., zn can be summarised using their corresponding Trigonometric Mo-

ments. In the simplest terms, a sample trigonometric moment is defined through ap + ibp, where p

refers to the pth moment around the zero direction. ap and bp are defined through (eq. 7):

ap =
1

n

n∑
j=1

cos pθj , bp =
1

n

n∑
j=1

sin pθj (7)
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Supplementary Figure S1. 4: Example of a single measured angle represented in (A) circular
space as well as in (B) linear space

These values can be used to define the mean resultant vector’s length (eq. 8) and direction (eq.

9 & 10) on a complex plane:

R̄p =
(
a2p + b2p

)1/2 ∈ [0, 1] (8)

θ̄p = atan2 (bp, ap) (9)

atan2 (bp, ap) =



arctan(bp/ap), ap > 0,

arctan(bp/ap) + π, bp ≥ 0,

arctan(bp/ap)− π, bp < 0,

π/2, bp > 0, ap = 0,

−π/2, bp < 0, ap = 0,

undefined, bp = 0, ap = 0,

(10)

The sample mean direction (θ̄) can therefore be calculated through (eq. 11 to 13):

Y =

∑n
i=1 sinθ
n

, X =

∑n
i=1 cosθ
n

(11)

r =
√
X2 + Y 2 (12)

cos ā =
X

r
, sin ā =

Y

r
, θ̄ = arctan

(
sin ā

cos ā

)
(13)

and sample mean resultant length (R̄, eq. 14):
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R̄ =
1

n

n∑
j=1

cos
(
θj − θ̄

)
(14)

Sample medians (θ̃) are calculated as any angle ψ that lies on the midway point of an arc

[ψ,ψ + π), with median direction (eq. 15):

1

n

n∑
j=1

{π − |π − |θj − ψ||} (15)

3.2 Summary Statistics for Sample Concentration and Dispersion

The trigonometric moments provide a number of useful measurements that can be used to define

the nature of a set of observations. The second trigonometric moment (p = 2) is where the majority

of information regarding skewness and kurtosis can be obtained. We can define the second central

sine (eq. 16) and cosine (eq. 17) moments through:

b̄2 =
1

n

n∑
j=1

sin 2
(
θj − ¯theta

)
(16)

ā2 =
1

n

n∑
j=1

cos 2
(
θj − ¯theta

)
(17)

Which can additionally be converted into standardised measures [6]:

ŝ =
b̄2(

1− R̄
)3/2 (18)

k̂ =
ā2 − R̄4(
1− R̄

)2 (19)

for skewness (eq. 18) and kurtosis (eq. 19), respectively.

An additional metric used in circular statistics is the sample circular variance (V ), which is simply

measured via V = 1−R̄, where V ∈ [0, 1] with 1 indicating high concentrations of observations across

the circle.

From each of the aforementioned summary statistics, a number of conclusions can be withdrawn

regarding the normality of our data. Nevertheless, in order to decide whether parametric or non-

parametric tests should be used for further inference, two additional components must be considered;

uniformity and symmetry.

Uniformity is tested considering the measurements of concentration previously defined through

R̄ (eq. 14). The null-hypothesis in this case considers data to be uniformly distributed around a

circle when R̄ is no greater than a defined threshold. The best means of testing for this is via the

Rayleigh test [7].

Depending on the type of data being tested, however, uniformity is not always a precise means of

testing for deviations from normality. When considering how certain observations are not likely to
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appear across the entire spectrum of the circular scale, uniformity is, more often than not, absent.

Under this premise, symmetry is a more empirical means of testing for statistical corruption in

circular data.

Symmetry is measured considering the distribution of b̄2 (eq. 16 & 18) around θ̄. The presence

of reflective symmetry can be assessed using the following test statistic (eq. 20 & 21):

z =
b̄2√

ˆvar
(
b̄2
) (20)

ˆvar
(
b̄2
)

=
1

n

[
1− ā4

2
− 2ā2 +

2ā2
R̄

{
ā3 +

ā2 (1− ā2)

R̄

}]
(21)

where large values of z lead to rejection of the null hypothesis, indicating a notably skewed

distribution [8]. A robust extension of this test can then be obtained through employing traditional

bootstrap procedures in statistics [9]. p-values can then additionally be assigned confidence intervals

through (eq. 22):

p̂± z(1−α/2)

√
p̂ (1− p̂)
(NR + 1)

(22)

where NR are the number of permutations or repeats, typically set to 10,000 [8, 10].

Finally, a note has to be made on the definition of “normality” in circular data. As opposed

to linear statistics, where a Gaussian distribution describes a bell-shaped curve, inferring normality

on circular statistics can often be complicated and will be dependent on the domain being studied.

Under this premise, a number of distribution types have been defined [11–15] (Fig. S1.5). Much can

be said on the properties and definitions of each distribution type, however this goes far beyond the

scope of the present document.

After careful analysis of each of the proposed representations, the variable OA can be considered

closest to the Von Mises Distribution [13–15] (Fig. S1.6 & Table S1.1).

Supplementary Table S1. 1: Statistical Comparison between different hypothetical distributions
and the measurements OA. Test statistic used corresponds to the Mardia-Watson-Wheeler test

(consult section ”Comparing Samples and Null Hypothesis Testing”). p (H0) have also been
included.

Hypothetical Distribution Wg p-value p (H0)
Cardioid 185.76 4.6e-41 1.2e-38

Wrapped Cauchy 114.59 1.3e-25 2.0e-23
Wrapped Normal 3.53 0.17 0.45

von Mises 0.07 0.25 0.49
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Supplementary Figure S1. 5: Examples of 4 useful circular distribution types; the Wrapped
Normal [13], Cardioid [11], Wrapped Cauchy [12] and Von Mises [13–15]

The von Mises distribution is described to have density (eq. 23):

f(θ) =
eκ cos(θ−µ)

2πI0(κ)
(23)

where µ defines the mean direction and κ is defined as the concentration parameter (eq. 24):

Ip(κ) =
1

2π

∫ 2π

0

cos pθeκ cosθdθ (24)

The Von Mises Distribution usefully describes a series of observations that are concentrated to

one particular area of the overall “circular scale”. In this sense the density function (eq. 24) best

suits the variable OA considering how values of 10◦ or 270◦ are unlikely to occur in a cut mark

Supplementary Figure S1. 6: Percentile-Percentile plots comparing OA measurements with 4
theoretical distributions; the Wrapped Normal [13], Cardioid [11], Wrapped Cauchy [12] and Von

Mises [13–15]
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or tooth score dataset. This function, therefore, resembles the “bellcurve” component of a linear

Gaussian distribution, yet is conveniently wrapped in a circular feature space.

Hypothesis testing for a goodness-of-fit comparing our data with the Von Mises Distribution

is best performed using a Maximum Likelihood Estimation with bias correction [16]. Goodness-

of-fit tests can be performed visually using Quantile-Quantile and Probability-Probability plots, or

quantitatively via a direct comparison between a theoretically constructed Von Mises Distribution

and the target distribution. More notes on this can be consulted in the ”Comparing Samples and

Null Hypothesis Testing” section of the present document. Results can be bootstrapped to construct

both confidence intervals and more robust test-statistics via equation 22.

Finally, distributions can be visualised through simple scatter plots and enhanced via a kernel

density function. Kernel’s only require the definition of a single parameter, known as the bandwidth.

This can be empirically defined using cross-validation to minimize the error of the correspondent

representation. The present study uses Mean Squared Error loss functions for kernel bandwidth

estimation [17].

3.3 Comparing Samples and Null Hypothesis Testing

Combining all of the above, and in accordance with standard practice in both traditional and robust

statistics, comparing samples can be performed considering differences in either mean or median for

normally distributed and non-normally distributed observations respectively. Furthermore, spher-

ical data can additionally be studied using two additional tests. These tests are used to describe

concentration and overall distribution properties. Considering how concentrations are not likely to

vary greatly within our datasets, the present study focuses solely on differences in distribution.

Hypothesis Testing for differences in Mean

A common statistical test for the evaluation of differences between two or more means was originally

proposed by Watson [18], with a bootstrap alternative for more robust calculations avoiding issues

related to sample size [16, 19]. The test statistic, Yg, used for this test is dependent on the circular

dispersion of the samples (g). For this Watson defined two separate statistics P (eq. 25 & 27) and

M (eq. 26 & 28);

Y Pg =
2 (N −Rp)

δ̂0
(25)

YMg = 2

(
g∑
k=1

nk

δ̂k
−RM

)
(26)

RP =

√
Ĉ2
P + Ŝ2

P , Ĉ2
P =

g∑
k=1

nk cos θ̄k, Ŝ2
P =

g∑
k=1

nk sin θ̄k, δ̂0 =

g∑
k=1

nk
nk δ̂k
N

(27)

RM =

√
Ĉ2
M + Ŝ2

M , Ĉ2
M =

g∑
k=1

nk cos θ̄k

δ̂k
, Ŝ2

M =

g∑
k=1

nk sin θ̄k

δ̂k
(28)
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Choice of M or P considers the ratio of the largest δ̂g values divided by the smallest. If the

resultant value is less than 4, then the P procedure is used [16, 19, 20].

Hypothesis Testing for differences in Median

Watson’s Yg test is generally considered non-parametric as it does not make any underlying as-

sumptions on distribution dispersion or shape. Nevertheless, the bootstrapped versions proposed

by Fisher and Hall [16, 19] require slight adjustments according to underlying symmetry among the

distributions. Under this premise, for samples with large ŝ and z values (eq. 18 & 20), alternatives

should be considered using sample medians.

Fisher’s non-parametric proposal [16] consists in first calculating the median direction (θ̃) for all

points in the combined samples. For each of the samples, k, mk is used to denote the number of

negative values resultant of θk1 − θ̃, ..., θknk
− θ̃. Additionally, each of the θkj − θ̃, j = 1, ..., nk are

calculated to lie ∈ (−π, π], and M is thus all the consequent negative values. The null-hypothesis

can then be defined through the test statistics Pg where excessively large values reject the possibility

that distributions g share a common median (eq. 29).

Pg =
N2

M(N −M)

g∑
k=1

m2
k

nk
− NM

N −M
(29)

For robustness, randomization is a commonly used permutation procedure and strongly recom-

mended [16, 19, 20].

Hypothesis Testing for differences in Distribution

A popular test for assessing differences in distributions is the Mardia-Watson-Wheeler test [6, 21].

This rank based test first groups all measurements into a single vector, ranking them using any

random direction. From here Rkj is defined as the rank of element j in sample k, which can be

plugged in to calculate the test statistic through (eq. 30 & 31):

Wg = s

g∑
k=1

C2
k + S2

k

nk
(30)

Ck =

nk∑
j=1

cos

(
2πRkj
N

)
, Sk =

nk∑
j=1

sin

(
2πRkj
N

)
(31)

If the test statistic is high, then the difference between distributions can be considered important.

As with the previous example, for robust calculations regardless of sample size, randomization

permutations are recommended [16, 19, 20].

4 Solutions for Multivariate Analyses

In light of the definitions presented within this document, and in order to find the best means

of incorporating circular data into multivariate statistical analyses combined with linear variables,
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multiple experiments were performed using autoencoders for Principal Components Analysis (PCA).

An autoencoder is a neural network consisting of two parts; (1) the encoder and (2) the decoder

[22, 23]. These networks are trained to produce an output which is a reconstructed copy of the

input. Autoencoders are usually designed using an hourglass shape with smaller hidden layers in

the middle so as to reproduce the effect of compression and dimensionality reduction on the input

(Fig. S1.7). The Encoder is thus used to literally encode the inputs, representing said inputs as a

compressed vector, while the decoder reconstructs the input from this compressed representation.

The output from the decoder can then be compared with the input so as to assess the quality of the

encoded representation. These techniques have traditionally been known to be particularly useful

for dimensionality reduction and feature learning [23–25].

4.1 Autoencoder Methods

The advantage of using autoencoders for PCA lies in the ability to benchmark and assess dimension-

ality reduction performance via measurable metrics. For the purpose of this study, Mean Squared

Error (MSE, eq. 32) was chosen.

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (32)

To recreate the functionality of PCA via a Neural-Network based architecture, the autoencoder

was programmed to include a single hidden layer containing the reduced dimensions of the data

(Fig. S1.7). The size of this hidden layer was fixed at 2 considering how traditional PCA of the

respected metric variables usually represents >99% of the total variance. To further replicate the

underlying parametric components of PCA, only linear activation functions were used. Following

this, 4 additional properties had to be established in order to ensure the autoencoder has the same

properties as PCA. These include;

1. Tied weights between the encoder and the decoder

2. Orthogonal weights to ensure each vector is independent from the others

3. Uncorrelated features to ensure that outputs are uncorrelated

4. ”Unit Norm” across all weights

Linked with property 1, no bias was used on either the encoder or the decoder to ensure that

reconstruction error was entirely dependent on the variables rather than the configuration of the

model.

The final Principal Component Autoencoder (PC-Autoencoder) was then trained for 100 epochs

with batch sizes of 8. Weights were optimized using a standard Stochastic Gradient Descent algo-

rithm with the default learning rate. MSE (eq. 32) was used as the loss function. All variables

were additionally scaled prior to training. For each of the trials, the variable OA was input into the

model using different formats to assess which of the representations of OA were able to produce the

least amount of reconstruciton error (Fig. S1.7). These representations include (Fig. S1.8):

12



Supplementary Figure S1. 7: Autoencoder architecture for Principal Component Analysis
(PC-Autoencoder). Node with variable x varies according to the representation of OA being used.

Please note that the bias neuron has been removed from this visualisation for simplicity.

1. OA recorded in degrees (θ◦)

2. OA recorded in radians (θc)

3. Two separate neurons including cosθ and sinθ values (x & y).

4. A single neuron including a combination of linearly transformed θ values, defined through

cosθ + sinθ (x+ y).

Finally, considering how weight initialisation is a stochastic process, training was permuted 30

times per trial and summary statistics were used to report the final results.

Alongisde reconstruction error analyses, tests were performed to observe element loadings, con-

sidering the weight of each variable (xk) that is extracted through the corresponding eigenvector

(~em) for each of the individual elements ek,m.
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Supplementary Figure S1. 8: Opening Angles from the present study converted into (x,y)
coordinates and then combined as a single linear component

4.2 Multivariate Results

PC-Autoencoders revealed the optimal method for incorporating opening angles into multivariate

statistics is through the combination of linearly transformed radians; cosθ+sinθ or x+y (Fig. S1.9,

Table S1.2).

It can clearly be seen through the results presented here that attempting to employ parametric

linear functions to circular data produces a notable increase in multivariate error. Likewise, results

of matrix dimensionality reduction including θ◦ was less consistent than in all other cases (Deviation

values in Table S1.2). Finally it can be seen how combining the linearly transformed circular variables

into a single values improves the quality of dimensionality reduction (Kruskal-Wallis Chi2, p = 0.025),

thus demonstrating that cosθ + sinθ is the most reliable means of incorporating circular data into

multivariate analyses.

When considering the effects of variable transformations on each of the ~em, interestingly, the

magnitude of OA-θ◦ is substantially larger than any of the other variables. While the effects of

scaling or conversion of OA-θ◦ into OA-θc is likely to correct this, the weight OA-θ◦ has on the

overall variation in feature space is a factor worth mentioning.

Finally, considering correlation plots (Fig. S1.9) reveal very high correlations between WIS,

WIM, WIB, RDC and LDC variables, it may be argued that the real issue in these multivariate

analyses is the overly correlated nature of these variables. This is a factor that is likely to mask

the true influence of other variables, especially in the case of tooth scores, possibly indicating that

variables such as WIM and WIB are redundant when paired with WIS.

14



Supplementary Figure S1. 9: Boxplots of Mean Squared Error (MSE) values obtained from 30
training iterations of the PC-Autoencoder using different representations of the variable OA

Supplementary Figure S1. 10: Principal Component Analysis Biplot with Variable Loadings.
Left panel including OA in degrees. Right panel including OA as linearly transformed (x+ y)

variables. IMPORTANT NOTE: For ease of visual representations plot axes do not have equal
scales
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Supplementary Figure S1. 11: Scatter plot matrix for all variables
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Supplementary Table S1. 2: Descriptive statistics for Mean Squared Error (MSE) values
obtained from 30 training iterations of the PC-Autoencoder using different representations of the

variabel OA

Measurement Degrees Radian x + y x & y
Shapiro w 0.97 0.95 0.897 0.91
Shapiro p 0.63 0.17 0.007 0.02

IR 0.05 Limit 0.005 0.006 0.06 0.008
Central Tendency∗ 0.019 0.018 0.014 0.019

Deviation† 0.007 0.007 1.6e-05 0.008
IR 0.95 Limit 0.032 0.028 0.026 0.023

∗ Variations of the central tendency metric include the mean for
Gaussian distributions and the median for non-Gaussian distribu-
tions; † Variations of the deviation metric include the standard
deviation for Gaussian distributions and the Biweight Midvariance
for non-Gaussian distributions
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Vallés-Iriso, J. Matesanz-Vicente, D. González-Aguilera, and M. Domı́nguez-Rodrigo, “The

use of micro-photogrammetry and geometric morphometrics for identifying carnivore agency

in bone assemblage,” Journal of Archaeological Science: Reports, vol. 14, pp. 106–115, 2017.

doi: 10.1016/j.jasrep.2017.05.043.
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