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Motivation

System Identification – can be applied to any industrial process where the 
inputs and outputs can be measured to build its mathematical model.
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Using local/global optimizers: Simplex, 
Gradient-and stochastic gradient-based 

methods, simulated annealing,…

Standard Parameter Identification Framework
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Input-based Parameter Identification Framework
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Input-based Parameter Identification Implementation Aspects  
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Differential Flatness for Distributed-Parameter Problems
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Conditions for a system to be differentially flat:
• Existence of a flat output

𝑦!"#$ = ℎ!"#$ 𝑥, 𝑢, �̇�, … , 𝑢% , 𝑝
• Fulfilling the following conditions:

𝑥 = Ψ& 𝑦!"#$, �̇�!"#$, … , 𝑦!"#$
! , 𝑝

𝑢 = Ψ' 𝑦!"#$, �̇�!"#$, … , 𝑦!"#$!"# , 𝑝
dim𝑦!"#$ = dim𝑢

Simulation 
model

Inverse 
model

𝑢!"# 𝑦!"# 𝑦$%&% 𝑢$%&%

Identification of Parametric Models: from Experimental Data; Eric Walter, and Luc Pronzato
Springer; Auflage: 1997.
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Case Study: Diffusion-type Problem
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Considering a parabolic PDE:

𝜕Φ
𝜕𝑡

= 𝑝
𝜕(Φ
𝜕𝑥(

+ 𝑢(𝑥, 𝑡)

with p = 0.1 and 𝑢) = sin(2𝜋𝑥).

§ The system is differentially flat with a flat output defined as the vector:

𝑦!"#$ = [𝑦$&,+, 𝑦$&,(, … , 𝑦$&,,]
where 𝑦 corresponds to the measured output of Φ.

Fig. S1:A simple diffusion system.

Φ
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Case Study: Diffusion-type Problem + Neural ODEs
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Considering a parabolic PDE:

𝜕Φ
𝜕𝑡

= 𝑝
𝜕(Φ
𝜕𝑥(

+ 𝑢(𝑥, 𝑡)

with p = 0.1 and 𝑢) = sin(2𝜋𝑥).

§ Uses neural ODEs to get the data-driven
model of the process under study, generally
represented as:

>�̇� 𝑡 = 𝑁𝑁 𝑥 𝑡 , 𝑢 𝑡 , 𝑝 ;
𝑥 𝑡) = 𝑥)

§ This acts as a surrogate model – the output
functions and their derivatives are derived.

ü Discovers and creates numerical solutions
ü Including time derivatives
ü Might be combined with process knowledge

(i.e., physics informed neural networks)

NNL( 𝑥 = 𝑥 ∈ R)! ,
NNL* 𝑥 = 𝜎 W*NNL*+, x + b* ∈ R)"

∀1 ≤ 𝑗 ≤ 𝐼 − 1
NNL- 𝑥 = W-NNL-+, 𝑥 + b- ∈ R)# .

An alternative approach…

No model,
Only measurements
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Control Input by Model Inversion
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§ Control input (at a particular point in dimension) in time domain is calculated using the formula:

𝑢 𝑦$&,+ = �̇�+,+ −
𝑝
∆𝑥(

𝜙$&,,-+ +
2𝑝
Δ𝑥(

𝑦$&,, −
𝑝
Δ𝑥

𝑦$&,,.+

§ Extending this throughout the dimensional space – new control 𝑢/#$# fed back to get an effective
control of diffusion.

Fig. S2a: A conventional  diffusion profile for the chosen diffusion coefficient 𝑝 = 0.1. Fig. 2b: Compensated diffusion profile by closing the loop with 𝑢$%&% from the inverse model.
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Parameter Sensitivity Analyses
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≔ parameter sensitivities based on output profiles

2. .1
.0
≔ parameter sensitivities based on input profiles

Fig. S3: Sensitivities to the diffusion parameter variation: (a) based on the measured output: (b) based on the re-constructed input.
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Conclusions
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§ Standard framework for parameter identification which gets its loss function based on the output data 
is given an advancement – introducing an input-based framework.

§ Differential flatness concept – to calculate the control input.
§ The surrogate model involving neural ODEs – to get the output functions and their derivatives.
§ Sensitivity analyses – based on the output data and the control input.
§ Input-based analysis – higher sensitivity value, so better probability to identify the parameter.
§ But the calculated input 𝑢/#$# depends on the quality of model inversion and the neural ODE 

surrogate model – could be improved using more optimization design tools.
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